Analysis and Functional Significance of TRAP1 in Glioblastoma
https://doi.org/10.24060/2076-3093-2025-15-2-19-27
Abstract
Introduction. Glioblastoma exhibits high aggressiveness and complex mechanisms of therapy resistance. Tumor necrosis factor receptor-associated protein 1 (TRAP1) participates in metabolic regulation and tumor cell resistance to apoptosis; however, its role in glioblastoma remains understudied. Materials and methods. Glioma cell lines T98G and human brain astrocytes (HBA) were used as controls. TRAP1 expression was suppressed via the lentiviral transduction method using short hairpin RNA (shRNA). Exosomes were isolated from culture medium by ultracentrifugation and subsequently identified by typical markers (TSG101, CD63, and ALIX). The protein-level expression of TRAP1 and key glycolytic enzymes was analyzed by western blot analysis. Cell viability was assessed using the MTT assay, while apoptosis levels were measured using Annexin V-FITC/PI staining. In addition, ATP production was analyzed using bioluminescent methods. Results and discussion. TRAP1 was overexpressed in T98G cells, including in exosomes, while HBA exhibited moderate to low TRAP1 levels. The suppression of TRAP1 in T98G cells resulted in a decrease in glycolytic enzyme expression, an increase in apoptosis, and a decrease in cell viability. TRAP1 overexpression facilitated metabolic reprogramming toward aerobic glycolysis, along with reducing ATP synthesis. Exosomal TRAP1 likely participates in intercellular communication, promoting tumor adaptation to stress and the formation of a pro-tumor microenvironment. Conclusion. These findings support the pivotal role of TRAP1 in regulating metabolic status and maintaining aggressive phenotypes in glioblastoma. The targeted inhibition of TRAP1 may become a promising therapeutic strategy for glioblastoma, aimed at reducing tumor cell viability and limiting metabolic flexibility.
About the Authors
I. F. GareevRussian Federation
Ilgiz F. Gareev — Cand. Sci. (Med.), Senior Researcher
Ufa; Moscow
O.A. Beylerli
Russian Federation
Ozal A. Beylerli — Cand. Sci. (Med.), Senior Researcher
Ufa; Moscow
Zhang Hongli
China
Hongli Zhang — Junior Research Assistant, Neurosurgery Unit
Harbin
S. A. Roumiantsev
Russian Federation
Sergey A. Roumiantsev — Dr. Sci. (Med.), Prof., Corresponding Member of the Russian Academy of Sciences
Moscow
References
1. Bush N.A., Chang S.M., Berger M.S. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):1–14. DOI: 10.1007/s10143-016-0709-8
2. Lim M., Xia Y., Bettegowda C., Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42. DOI: 10.1038/s41571-018-0003-5
3. Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. DOI: 10.1016/j.cell.2013.09.034
4. Tan A.C., Ashley D.M., López G.Y., Malinzak M., Friedman H.S., Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299–312. DOI: 10.3322/caac.21613
5. Yilmaz S., Cizmecioglu O. PI3K signaling at the crossroads of lipid metabolism and cancer. Adv Exp Med Biol. 2025;1479:139–64. DOI: 10.1007/5584_2024_832
6. Chinopoulos C. Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett. 2011;585(9):1255–9. DOI: 10.1016/j.febslet.2011.04.004
7. Wang S.F., Tseng L.M., Lee H.C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 2023;30(1):61. DOI: 10.1186/s12929-023-00956-w
8. Altieri D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem J. 2010;430(2):199–205. DOI: 10.1042/BJ20100814
9. Hoter A., El-Sabban M.E., Naim H.Y. The HSP90 Family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560. DOI: 10.3390/ijms19092560
10. Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion. 2020;50:42– 50. DOI: 10.1016/j.mito.2019.09.011.
11. Chae Y.C., Angelin A., Lisanti S., Kossenkov A.V., Speicher K.D., Wang H., et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139. DOI: 10.1038/ncomms3139
12. Masgras I., Sanchez-Martin C., Colombo G., Rasola A. The Chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol. 2017;7:58. DOI: 10.3389/fonc.2017.00058
13. Matassa D.S., Agliarulo I., Avolio R., Landriscina M., Esposito F. TRAP1 Regulation of cancer metabolism: dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4):195 DOI: 10.3390/genes9040195
14. Wengert L.A., Backe S.J., Bourboulia D., Mollapour M., Woodford M.R. TRAP1 chaperones the metabolic switch in cancer. Biomolecules. 2022;12(6):786. DOI: 10.3390/biom12060786
15. Kalluri R., McAndrews K.M. The role of extracellular vesicles in cancer. Cell. 2023;186(8):1610–26. DOI: 10.1016/j.cell.2023.03.010
16. Whiteside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79. DOI: 10.1016/j.smim.2017.12.003
17. Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. DOI: 10.1007/s11060-013-1084-8
18. Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. DOI: 10.1126/science.aau6977
19. Fridman E.S., Ginini L., Gil Z. The role of extracellular vesicles in metabolic reprogramming of the tumor microenvironment. Cells. 2022;11(9):1433. DOI: 10.3390/cells11091433
20. Yang E., Wang X., Gong Z., Yu M., Wu H., Zhang D. Exosomemediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242. DOI: 10.1038/s41392-020-00359-5
21. van Ommeren R., Staudt M.D., Xu H., Hebb M.O. Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol. 2016;127(2):209–19. DOI: 10.1007/s11060-016-2070-8
22. Li X., Jing Z., Li X., Liu L., Xiao X., Zhong Y., et al. The role of exosomes in cancer-related programmed cell death. Immunol Rev. 2024;321(1):169–80. DOI: 10.1111/imr.13286
23. Matassa D.S., Amoroso M.R., Lu H., Avolio R., Arzeni D., Procaccini C., et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54. DOI: 10.1038/cdd.2016.39
24. Chen S., Cao G., Wu W., Lu Y., He X., Yang L., et al. Mining novel cell glycolysis related gene markers that can predict the survival of colon adenocarcinoma patients. Biosci Rep. 2020;40(8):BSR20201427. DOI: 10.1042/BSR20201427
25. Jhaveri K., Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 2012;65:471–517. DOI: 10.1016/B978-0-12-397927-8.00015-4
26. Karami Fath M., Azami J., Masoudi A., Mosaddeghi Heris R., Rahmani E., Alavi F., et al. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int. 2022;22(1):262. DOI: 10.1186/s12935-022-02642-7
27. Porporato P.E., Filigheddu N., Pedro J.M.B., Kroemer G., Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265–80. DOI: 10.1038/cr.2017.155
28. Indira Chandran V., Gopala S., Venkat E.H., Kjolby M., Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol. 2024;8(1):103. DOI: 10.1038/s41698-024-00600-2
Review
For citations:
Gareev I.F., Beylerli O., Hongli Zh., Roumiantsev S.A. Analysis and Functional Significance of TRAP1 in Glioblastoma. Creative surgery and oncology. 2025;15(2):115-123. (In Russ.) https://doi.org/10.24060/2076-3093-2025-15-2-19-27