Levels of T-cell Receptor Excision Circles and B-cell κ-deletion Element in Patients with Stages I–III Ovarian Cancer
https://doi.org/10.24060/2076-3093-2025-152-3-274-281
Abstract
Introduction. Ovarian cancer is the ninth most common malignant neoplasm. This condition often causes severe com‑ plications, such as loss of reproductive organs, which is particularly characteristic of hereditary forms of the cancer. At present, a wide range of ovarian cancer treatments is available, including targeted therapy; however, optimal im‑ munotherapy regimens are still lacking. The development and progression of ovarian cancer are largely determined by impaired immune surveillance. A factor influencing the effectiveness of immune surveillance of the tumor is a diverse repertoire of T-cell and B-cell receptors. The aim of this study was to investigate the levels of T-cell receptor excision cir‑ cles (TREC) and κ-deleting recombination excision circles (KREC) in patients with stage I–III ovarian cancer. Materials and methods. Levels of TREC and KREC were analyzed in 42 patients with ovarian cancer who underwent radical treatment. The study included patients aged 23 to 74 years. Results and discussion. The median TREC level (copies/10⁵ cells) was 16.04 [Q1–Q3: 2.14–37.31], and the median KREC level (copies/10⁵ cells) was 130.06 [Q1–Q3: 0.34–917.00]. Following radical treatment, 17 patients (40.5%) experienced disease recurrence. The median recurrence-free survival was 19 months, with the earliest recurrence observed 7 months after surgery. Our findings corroborate previous studies indicating an association between malignant tumor progression and excision circle levels. The results also demonstrated a decrease in TREC and KREC levels with increasing patient age, as well as a clear trend toward recurrence in patients with reduced blood levels of TREC and KREC. Conclusion. Based on our results, in patients with recurrent ovarian can‑ cer, blood levels of TREC and KREC are low. These changes reflect the presence of immunodeficiency conditions, which in turn indicate reduced antitumor.
Keywords
About the Authors
Alexander V. SultanbaevRussian Federation
Alexander V. Sultanbaev — Cand. Sci. (Med.), Assoc. Prof., Senior Research Assistant, Department of Pedagogy and Psychology, Antiсancer Drug Therapy Unit, Laboratory of Inflammation Immunology
Ufa; Yekaterinburg
Irina A. Tuzankina
Russian Federation
Irina A. Tuzankina — Dr. Sci. (Med.), Prof., Laboratory of Inflammation Immunology
Yekaterinburg
Konstantin V. Menshikov
Russian Federation
Konstantin V. Menshikov — Cand. Sci. (Med.), Assoc. Prof., Department of Oncology and Clinical Morphology, Chemotherapy Unit
Ufa
Ainur F. Nasretdinov
Russian Federation
Ainur F. Nasretdinov — Anticancer Drug Therapy Unit No. 2
Ufa
Shamil I. Musin
Russian Federation
Shamil I. Musin — Cand. Sci. (Med.), Surgery Unit No. 6
Ufa
Alfiia A. Fatikhova
Russian Federation
Alfiia A. Fatikhova — Surgery Unit No. 8
Ufa
Nadezhda I. Sultanbaeva
Russian Federation
Nadezhda I. Sultanbaeva — Anticancer Drug Therapy Unit No 1
Ufa
Adel A. Izmailov
Russian Federation
Adel A. Izmailov — Dr. Sci. (Med.)
Ufa
Mikhail V. Sultanbaev
Russian Federation
Mikhail V. Sultanbaev — Cand. Sci. (Chem.), Department of Pharmacology
Ufa
Dmitry A. Kudlay
Russian Federation
Dmitry A. Kudlay — Dr. Sci. (Med.), Prof., Corresponding Member of the Russian Academy of Sciences, Department of Pharmacology, Laboratory of Personalized Medicine and Molecular Immunology
Ufa; Moscow
References
1. Chan J.K., Tian C., Kesterson J.P., Monk B.J., Kapp D.S., Davidson B., et al. Symptoms of women with high-risk early-stage ovarian cancer. Obstet Gynecol. 2022;139(2):157–62. DOI: 10.1097/AOG.0000000000004642
2. Dilley J., Gentry-Maharaj A., Ryan A., Burnell M., Manchanda R., Kalsi J., et al. Ovarian cancer symptoms in pre-clinical invasive epithelial ovarian cancer — An exploratory analysis nested within the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Gynecol Oncol. 2023;179:123–30. DOI: 10.1016/j.ygyno.2023.11.005
3. Manasa G., Mascarenhas R.J., Shetti N.P., Malode S.J., Aminabhavi T.M. Biomarkers for early diagnosis of ovarian carcinoma. ACS Biomater Sci Eng. 2022;8(7):2726–46. DOI: 10.1021/acsbiomaterials.2c00390
4. Seidel J.A., Otsuka A., Kabashima K. Anti-PD-1 and Anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol. 2018;8:86. DOI: 10.3389/fonc.2018.00086
5. Keenan T.E., Burke K.P., Van Allen E.M. Genomic correlates of response to immune checkpoint blockade. Nat Med. 2019;25(3):389–402. DOI: 10.1038/s41591-019-0382-x
6. Meléndez B., Van Campenhout C., Rorive S., Remmelink M., Salmon I., D’Haene N. Methods of measurement for tumor mutational burden in tumor tissue. Transl Lung Cancer Res. 2018;7(6):661–7. DOI: 10.21037/tlcr.2018.08.02
7. Choucair K., Morand S., Stanbery L., Edelman G., Dworkin L., Nemunaitis J. TMB: a promising immune-response biomarker, and potential spearhead in advancing targeted therapy trials. Cancer Gene Ther. 2020;27(12):841–53. DOI: 10.1038/s41417-020-0174-y
8. Yarchoan M., Hopkins A., Jaffee E.M. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377(25):2500–1. DOI: 10.1056/NEJMc1713444
9. Yarchoan M., Albacker L.A., Hopkins A.C., Montesion M., Murugesan K., Vithayathil T.T., et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight. 2019;4(6):e126908. DOI:10.1172/jci.insight.126908
10. Hellmann M.D., Callahan M.K., Awad M.M., Calvo E., Ascierto P.A., Atmaca A., et al. Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell. 2018;33(5):853–61.e4. DOI: 10.1016/j.ccell.2018.04.001
11. Hellmann M.D., Nathanson T., Rizvi H., Creelan B.C., Sanchez-Vega F., Ahuja A., et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell. 2018;33(5):843–52.e4. DOI: 10.1016/j.ccell.2018.03.018
12. Rizvi H., Sanchez-Vega F., La K., Chatila W., Jonsson P., Halpenny D., et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36(7):633–41. DOI: 10.1200/JCO.2017.75.3384
13. Rizvi N.A., Hellmann M.D., Snyder A., Kvistborg P., Makarov V., Havel J.J., et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8. DOI:10.1126/science.aaa1348
14. Fan S., Gao X., Qin Q., Li H., Yuan Z., Zhao S. Association between tumor mutation burden and immune infiltration in ovarian cancer. Int Immunopharmacol. 2020;89(Pt A):107126. DOI: 10.1016/j.intimp.2020.107126
15. Cristescu R., Mogg R., Ayers M., Albright A., Murphy E., Yearley J., et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockadebased immunotherapy. Science. 2018;362(6411):eaar3593. DOI: 10.1126/science.aar3593
16. Park J., Lee J.Y., Kim S. How to use immune checkpoint inhibitor in ovarian cancer? J Gynecol Oncol. 2019 Sep;30(5):e105. DOI: 10.3802/jgo.2019.30.e105
17. Morse C.B., Elvin J.A., Gay L.M., Liao J.B. Elevated tumor mutational burden and prolonged clinical response to anti-PD-L1 antibody in platinum-resistant recurrent ovarian cancer. Gynecol Oncol Rep. 2017;21:78–80. DOI: 10.1016/j.gore.2017.06.013
18. Sambasivan S. Epithelial ovarian cancer: review article. Cancer Treat Res Commun. 2022;33:100629. DOI: 10.1016/j.ctarc.2022.100629
19. Sultanbaev A.V., Kolyadina I.V., Menshikov K.V., Musin Sh.I., Gilyazova I.R., Sultanbayeva N.I., et al. Germinal mutations and malignant neoplasms. Significance for the pathogenesis, diagnosis and treatment of malignant neoplasms. Moscow: Medical Information Agency; 2024. (In Russ.).
20. Ripperger T., Gadzicki D., Meindl A., Schlegelberger B. Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eur J Hum Genet. 2009;17:722–31. DOI: 10.1038/ejhg.2008.212
21. Sokolenko A.P., Iyevleva A.G., Mitiushkina N.V., Suspitsin E.N., Preobrazhenskaya E.V., Kuligina E.Sh., et al. Hereditary breast-ovarian cancer syndrome in Russia. Acta Naturae. 2010;2(4):31–5. PMID: 22649661
22. Lawrence M.S., Stojanov P., Polak P., Kryukov G.V., Cibulskis K., Sivachenko A., et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8. DOI: 10.1038/nature12213
23. Sultanbaev A.V., Tuzankina I.A., Nasretdinov A.F., Sultanbaeva N.I., Musin Sh.I., Menshikov K.V., et al. Mechanisms of formation of specifi c antitumor immunity and resistance to immune checkpoint inhibitors. Problems in Oncology. 2024;70(3):433–9 (In Russ.). DOI: 10.37469/0507-3758-2024-70-3-433-439
24. Sultanbaev A.V., Tuzankina I.A., Musin Sh.I., Kolyadina I.V., Menshikov K.V., Sultanbaev M.V., et al. Specific antitumour immunity and mechanisms of tumour escape from immunological surveillance. P.A. Herzen Journal of Oncology. 2024;13(6):70–7 (In Russ.). DOI: 10.17116/onkolog20241306170
25. Goodman A.M., Kato S., Bazhenova L., Patel S.P., Frampton G.M., Miller V., et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16(11):2598–608. DOI: 10.1158/1535-7163.MCT-17-0386
26. Fan S., Gao X., Qin Q., Li H., Yuan Z., Zhao S. Association between tumor mutation burden and immune infiltration in ovarian cancer. Int Immunopharmacol. 2020;89(Pt A):107126. DOI: 10.1016/j.intimp.2020.107126
27. Marabelle A., Fakih M., Lopez J., Shah M., Shapira-Frommer R., Nakagawa K., et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020;21(10):1353–65. DOI: 10.1016/S1470-2045(20)30445-9
28. Requesens M., Foijer F., Nijman H.W., de Bruyn M. Genomic instability as a driver and suppressor of antitumor immunity. Front Immunol. 2024;15:1462496. DOI: 10.3389/fimmu.2024.1462496
29. Konstantinopoulos P.A., Waggoner S., Vidal G.A., Mita M., Moroney J.W., Holloway R., et al. Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinumresistant ovarian carcinoma. JAMA Oncol. 2019;5(8):1141–9. DOI: 10.1001/jamaoncol.2019.1048
30. Fu Y.P., Lin H., Ou Y.C., Wu C.H., Fu H.C. Bevacizumab as a mitigating factor for the impact of high systemic immune-inflammation index on chemorefractory in advanced epithelial ovarian cancer. BMC Cancer. 2024;24(1):1377. DOI: 10.1186/s12885-024-13087-8
31. Kvedaraite E., Ginhoux F. Human dendritic cells in cancer. Sci. Immunol. 2022;7(70):eabm9409. DOI: 10.1126/sciimmunol.abm9409
Review
For citations:
Sultanbaev A.V., Tuzankina I.A., Menshikov K.V., Nasretdinov A.F., Musin Sh.I., Fatikhova A.A., Sultanbaeva N.I., Izmailov A.A., Sultanbaev M.V., Kudlay D.A. Levels of T-cell Receptor Excision Circles and B-cell κ-deletion Element in Patients with Stages I–III Ovarian Cancer. Creative surgery and oncology. 2025;15(3):274-281. (In Russ.) https://doi.org/10.24060/2076-3093-2025-152-3-274-281