Development of Photopolymer Hydroxyapatite Suspensions for 3D Printing in Medicine
https://doi.org/10.24060/2076-3093-2025-15-4-364-375
Abstract
Introduction. Additive manufacturing of hydroxyapatite (HA) ceramics is considered a promising approach to creating personalized bone implants. However, highly loaded photopolymer suspensions assume precise composition and exposure conditions to ensure stable printing and product quality. The present study aims to develop a photopolymer suspension based on HA of in-house synthesis for the additive production of ceramic implants using DLP 3D printing. Materials and methods. HA is synthesized by coprecipitation and hydrothermal synthesis methods in aqueous solutions of calcium and phosphate salts. The powder is milled and fractionated for assessing the morphology and element composition using scanning electron microscopy and energy-dispersive X-ray fluorescence analysis, respectively. A photopolymer suspension with 60 wt. % of the inorganic phase, developed based on the synthesized HA, contains acrylate monomers, photoinitiating system and dispersing additives. In addition, photopolymerization is studied on a DLP 3D printer at different UV radiation powers and exposure times. Results and discussion. The synthesized well-crystallized HA has lamellar and nanostructured morphology, as well as developed porosity; the predominance of calcium and phosphorus without significant toxic impurities is confirmed. At a radiation power of 40 mW/cm², the optimal exposure time of 6–10 s ensures the formation of uniformly hardened layers with a thickness of about 0.7–0.9 mm and a thickness plateau at a further increase in exposure time. Conclusion. The obtained data indicate that the combination of controlled HA morphology and specially selected photopolymer matrix provides sufficient polymerization depth and layer stability required for DLP printing of complex geometries. High specific surface area and porosity of HA further enhance its potential in tissue engineering. The developed photopolymer suspension based on HA of in-house synthesis demonstrates suitability for DLP 3D printing and can be used as a basis for creating personalized ceramic implants in traumatology, orthopedics, neurosurgery, and maxillofacial surgery.
Keywords
About the Authors
A. R. BilyalovRussian Federation
Azat R. Bilyalov — Cand. Sci. (Med.), Assoc. Prof., Department of Traumatology and Orthopedics
Ufa
S. G. Karchevsky
Russian Federation
Stanislav G. Karchevsky — Laboratory of Additive Technologies
Ufa
A. A. Tikhonov
Russian Federation
Andrey A. Tikhonov — Laboratory of Additive Technologies
Ufa
M. F. Galautdinov
Russian Federation
Mars F. Galautdinov — Laboratory of Additive Technologies
Ufa
V. N. Akbashev
Russian Federation
Vladislav N. Akbashev — Department of Traumatology and Orthopedics
Ufa
K. V. . Danilko
Russian Federation
Ksenia V. Danilko — Cand. Sci. (Biol.), Assoc. Prof., Laboratory of Cell Cultures
Ufa
S. V. Piatnitskaia
Russian Federation
Svetlana V. Piatnitskaia — Cand. Sci. (Med.), Assoc. Prof., Bioprinting Laboratory
Ufa
I. Sh. Akhatov
Russian Federation
Iskander Sh. Akhatov — Dr. Sci. (Phys. and Math.), Prof., Chief Researcher, Laboratory of Mathematical Simulation
Ufa
D. V. Dzhurinskiy
Russian Federation
Dmitry V. Dzhurinskiy — Cand. Sci. (Engineering), Assoc. Prof., Senior Researcher, Laboratory of Mathematical Simulation
Ufa
R. V. Abdrakhimov
Russian Federation
Ruslan V. Abdrakhimov — Department of Urology and Oncology
Ufa
I. V. Burenina
Russian Federation
Irina V. Burenina — Dr. Sci. (Economics), Prof., Department of Economics and Management
Ufa
R. R. Ishemgulov
Russian Federation
Ruslan R. Ishemgulov — Cand. Sci. (Med.), Assoc. Prof., Department of Urology and Oncology
Ufa
References
1. Bose S., Akdogan E.K., Balla V.K., Ciliveri S., Colombo P., Franchin G., et al. 3D printing of ceramics: Advantages, challenges, applications, and perspectives. J Am Ceram Soc. 2024;107:7879–920. DOI: 10.1111/jace.20043
2. Duque-Uribe C., López Vargas V., Moreno Florez A.I., Pelaez-Vargas A., Ossa A., Cárdenas-Ramírez C., et al. Obtaining biocompatible ceramic scaffolds of calcium phosphates through ceramic stereolithography. J Mater Sci Mater Med. 2025;36(1):52. DOI: 10.1007/s10856-025-06903-5
3. Fruhstorfer J., Aneziris Ch.G. Influence of particle size distributions on the density and density gradients in uniaxial compacts. Ceramics Intern. 2017;43(16):13175–84. DOI: 10.1016/j.ceramint.2017.07.011
4. Nguyen M.T.H., Kim J.H., Jang W.T., Jung Y.J., Park E.J., Ha T.H., et al. Role of GO and photoinitiator concentration on curing behavior of PEG-based polymer for DLP 3D printing. ACS Omega. 2024;9(3):3287–94. DOI: 10.1021/acsomega.3c05378
5. Nam J., Kim M. Advances in materials and technologies for digital light processing 3D printing. Nano Converg. 2024;11(1):45. DOI: 10.1186/s40580-024-00452-3
6. Bai Y., Wu N., Li X., Liu Z., Li K., Jiao T., et al. Recent progress of 3D printed responsive scaffolds for bone repair: A review. Mater Today Bio. 2025;35:102351. DOI: 10.1016/j.mtbio.2025.102351
7. Kennedy B.M., De Barra E., Hampshire S., Kelleher M.C.Investigation of oleic acid as a dispersant for hydroxyapatite powders for use in ceramic filled photo-curable resins for stereolithography. J Eur Ceramic Soc. 2023;43(15):7146–66. DOI: 10.1016/j.jeurceramsoc.2023.07.028
8. Khan A.R., Grewal N.S., Jun Z., Tawfiq F.M.O., Tchier F., Muhammad Zulqarnain R., et al. Raising the bar: progress in 3D-printed hybrid bone scaffolds for clinical applications: a review. Cell Transplant. 2024;33:9636897241273562. DOI: 10.1177/09636897241273562
9. Roohani I., Newsom E., Zreiqat H. High-resolution vat-photopolymerization of personalized bioceramic implants: new advances, regulatory hurdles, and key recommendations. Int Mater Rev. 2023;68(8):1075– 97. DOI: 10.1080/09506608.2023.2194744
10. Long C., Liu Z., Liu C., Chen Z. Ceramic additive manufacturing via vat photopolymerization. Mater Sci Addit Manuf. 2025;4(3):025200031. DOI: 10.36922/MSAM025200031
11. Morrell R. A national measurement good practice guide No. 12: Biaxial flexural strength testing of ceramic materials. Teddington; 1998.
12. Niu Y., Jiang W., Yang L., Guan F., Yang Zh., Fan Z. Preparation of low-cost high strength soluble ceramic cores using heavy calcium carbonate by binder jetting and vacuum impregnation. J Eur Ceram Soc. 2023;43(16):7714–20. DOI: 10.1016/j.jeurceramsoc.2023.08.019
13. Mkhitaryan L., Baghdasaryan L., Khachatryan Zh., Aghayan M., Rodríguez M.A., Rstakyan V. Optimization of hydroxyapatite-PEGDA slurry for vat polymerization: Microstructure and mechanical properties of 3D printed bioscaffolds. Bol Soc Esp Cerám Vidrio. 2025;64(5):100459. DOI: 10.1016/j.bsecv.2025.100459
14. Lai H., Peng X., Li L., Zhu D., Xiao P. Novel monomers for photopolymer networks. Progress Polymer Sci. 2022;128:101529. DOI: 10.1016/j.progpolymsci.2022.101529
15. Liu M., Wang Y., Zhang H., Liu X., Wei Q., Li M., et al. Effects of dispersant concentration on the properties of hydroxyapatite slurry and scaffold fabricated by digital light processing. J Manufact Processes. 2024;109:460–70. DOI: 10.1016/j.jmapro.2023.12.040
16. Setter R., Schmölzer S., Rudolph N., Moukhina E., Wudy K. Thermal stability and curing behavior of acrylate photopolymers for additive manufacturing. Polym Eng Sci. 2023;63(7):2180–92. DOI: 10.1002/pen.26355
17. Voet V.S.D., Strating T., Schnelting G.H.M., Dijkstra P., Tietema M., Xu J., et al. Biobased acrylate photocurable resin formulation for stereolithography 3D printing. ACS Omega. 2018;3(2):1403–8. DOI: 10.1021/acsomega.7b01648
18. Hayek El J., Belaid H., Cornette de Saint Cyr L., Chawich El G., Coy E., Iatsunskyi I., et al. 3D printed bioactive calcium silicate ceramics as antibacterial scaffolds for hard tissue engineering. Mater Adv. 2024;5:3228–46. DOI: 10.1039/D3MA01088K
19. Bennett J. Measuring UV curing parameters of commercial photopolymers used in additive manufacturing. Addit Manuf. 2017;18:203–12. DOI: 10.1016/j.addma.2017.10.009
20. Niedźwiedź M.J., Demirci G., Kantor-Malujdy N., El Fray M. Influence of photoinitiator type and curing conditions on the photocuring of soft polymer network. Materials (Basel). 2023;16(23):7348. DOI: 10.3390/ma16237348
21. Zhang F., Zhou S., You H., Zhang G., Yang J., Shi Y. 3D printing of ceramic matrix composites: Strengthening and toughening strategies. Composites Part B: Engineering, 2025;297(4):112335. DOI: 10.1016/j.compositesb.2025.112335
22. Sim J.-H., Koo B.-K., Jung M., Kim D.-S. Study on debinding and sintering processes for ceramics fabricated using digital light processing (DLP) 3D printing. Processes. 2022;10(11):2467. DOI: 10.3390/pr10112467
23. Jiang X., Liu J., Wang Y., Ding Z., Liu J., Ji L., et al. Prediction model for sintering shrinkage in micro-nano ceramic 3D printing of triply periodic minimal surface structures, Materials Design. 2025;260:115053. DOI: 10.1016/j.matdes.2025.115053
24. Li C., Chen G., Wang Y., Xu W., Hu M. Indirect co-culture of osteoblasts and endothelial cells in vitro based on a biomimetic 3D composite hydrogel scaffold to promote the proliferation and differentiation of osteoblasts. PLOS ONE. 2024;19(3):e0298689. DOI: 10.1371/journal.pone.0298689
25. Subramaniam D., Sekaran S. In vitro biocompatibility assessment of a novel membrane containing magnesium-chitosan/carboxymethyl cellulose and alginate intended for bone tissue regeneration. Cureus. 2024;16(2):e54597. DOI: 10.7759/cureus.54597
26. Wang S., Lin J., Jin H., Yang Y., Huang G., Wang J. Photopolymerization-based three-dimensional ceramic printing technology. 3D Print Addit Manuf. 2024;11(1):406–14. DOI: 10.1089/3dp.2022.0132
27. Vijayan A., Vishnu J., A R., Shankar B., Sambhudevan S. A review on hydroxyapatite fabrication: from powders to additive manufactured scaffolds. Biomater. Sci. 2025;13(4): 913–45. DOI: 10.1039/D4BM00972J
28. Mondal S., Park S., Choi J., Vu T.T.H., Doan V.H.M., Vo T.T., et al. Hydroxyapatite: a journey from biomaterials to advanced functional materials. Adv Colloid Interface Sci. 2023;321:103013. DOI: 10.1016/j.cis.2023.103013
29. Huang Y.T., Imura M., Nemoto Y., Cheng C.H., Yamauchi Y. Block-copolymer-assisted synthesis of hydroxyapatite nanoparticles with high surface area and uniform size. Sci Technol Adv Mater. 2011;12(4):045005. DOI: 10.1088/1468-6996/12/4/045005
30. Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J Biomed Mater Res. 2002;62(4):600–12. DOI: 10.1002/jbm.10280
31. Ma M.G., Zhu Y.J., Chang J. Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite. J Phys Chem B. 2006;110(29):14226–30. DOI: 10.1021/jp061738r
32. Wang Y.J., Lai C., Wei K., Chen X., Ding Y., Wang Z.L. Investigations on the formation mechanism of hydroxyapatite synthesized by the solvothermal method. Nanotechnology. 2006;17:4405–13. DOI: 10.1088/0957-4484/17/17/020
33. Kim, MS; Kim, YJ. Synthesis of calcium-deficient hydroxyapatite in the presence of amphiphilic triblock copolymer. Mater. Lett., 2012;66(1):33–5. DOI: 10.1016/j.matlet.2011.08.050
34. Wang P., Li C., Gong H., Jiang X., Wang H., Li K. Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technol. 2010;203:315–21. DOI: 10.1016/j.powtec.2010.05.023
35. Müller F.A., Gbureck U., Kasuga T., Mizutani Y., Barralet J.E., Lohbauer U. Whisker-reinforced calcium phosphate cements. J Am Ceram Soc. 2007;90(11):3694–7. DOI: 10.1111/j.1551-2916.2007.01967.x
36. Jokić B., Mitrić M., Radmilović V., Drmanić S., Petrović R., Janaćković D. Synthesis and characterization of monetite and hydroxyapatite whiskers obtained by a hydrothermal method. Ceram. Int. 2011;37(1):167–73. DOI: 10.1016/j.ceramint.2010.08.032
37. Zhang H., Darvell B.W. Synthesis and characterization of hydroxyapatite whiskers by hydrothermal homogeneous precipitation using acetamide. Acta Biomater. 2010;6(8):3216–22. DOI: 10.1016/j.actbio.2010.02.011
38. Gopi D., Bhalaji P.R., Prakash V.C.A., Ramasamy A.K., Kavitha L., Ferreira J.M.F. An effective and facile synthesis of hydroxyapatite powders using oxalic acid-ethylene glycol mixture. Curr Appl Phys. 2011;11(3):590–3. DOI: 10.1016/j.cap.2010.10.003
39. Gshalaev V.S., Demirchan A.C. (editors) Hydroxyapatite: synthesis, properties, and applications. Nova Science Publishers; 2012.
40. Li C., Zhao L., Han J., Wang R., Xiong C., Xie X. Synthesis of citratestabilized hydrocolloids of hydroxyapatite through a novel two-stage method: a possible aggregates-breakdown mechanism of colloid formation. J Colloid Interface Sci. 2011;360(2):341–9. DOI: 10.1016/j.jcis.2011.04.059
41. Orlovskii V.P., Komlev V.S., Barinov, S.M. Hydroxyapatite and hydroxyapatite-based ceramics. Inorganic Materials. 2002;38:973–84. DOI: 10.1023/A:1020585800572
Review
For citations:
Bilyalov A.R., Karchevsky S.G., Tikhonov A.A., Galautdinov M.F., Akbashev V.N., Danilko K.V., Piatnitskaia S.V., Akhatov I.Sh., Dzhurinskiy D.V., Abdrakhimov R.V., Burenina I.V., Ishemgulov R.R. Development of Photopolymer Hydroxyapatite Suspensions for 3D Printing in Medicine. Creative surgery and oncology. 2025;15(4):364-375. (In Russ.) https://doi.org/10.24060/2076-3093-2025-15-4-364-375


























