Preview

Creative surgery and oncology

Advanced search

Effects of Microcirculation Disorders on the Development of Postoperative Complications in Abdominal Surgery

https://doi.org/10.24060/2076-3093-2025-15-4-402-414

Abstract

Postoperative complications represent a pressing issue of clinical medicine, worsening the prognosis and increasing the risk of death in surgical patients, especially in abdominal and oncological surgery. According to contemporary concepts, microcirculatory dysfunction appears to be an important pathophysiological factor underlying tissue hypoperfusion and development of unfavorable postoperative outcomes. The present review summarizes current data on the relationship between microcirculation disorders both in the surgical area and body as a whole and postoperative complications of abdominal surgery. The review addresses the following issues: (1) epidemiology of postoperative complications and its relevance in clinical surgery and resuscitation; (2) pathophysiology of perioperative microcirculatory disorders, including hemorrhagic shock, disseminated intravascular coagulation (DIC) and endothelial dysfunction; (3) organ-specific changes in microcirculation in surgical diseases; (4) contemporary diagnostic and monitoring methods for tissue perfusion assessment; (5) prognostic and diagnostic value of a number of microcirculation parameters; (6) contemporary therapeutic approaches to tissue perfusion optimization and complication prevention. Understanding the important role of microcirculation in ensuring tissue perfusion and oxygenation justifies the use of intensive care methods focused on microcirculation and thus the prevention of organ ischemia, infectious and other postoperative complications.

About the Authors

I. A. Ryzhkov
V.A. Negovskiy Scientific Research Institute of General Resuscitation, Federal Scientific and Clinical Centre of Intensive Care Medicine and Rehabilitology
Russian Federation

Ivan A. Ryzhkov — Cand. Sci. (Med.), Leading Researcher, Laboratory of Experimental Research

Moscow 



L. A. Varnakova
V.A. Negovskiy Scientific Research Institute of General Resuscitation, Federal Scientific and Clinical Centre of Intensive Care Medicine and Rehabilitology
Russian Federation

Lidia A. Varnakova — Junior Researcher, Laboratory of Experimental Research

Moscow 



P. A. Fonova
V.A. Negovskiy Scientific Research Institute of General Resuscitation, Federal Scientific and Clinical Centre of Intensive Care Medicine and Rehabilitology
Russian Federation

Polina A. Fonova — Junior Researcher, Laboratory of Experimental Research

Moscow 



References

1. Kunitskiy Yu.L., Kolesnikov A.N., Khar’kovskiy V.A., Khristulenko A.A. Surgical stress: pathogenesis and pathways. Unresolved issues. Bulletin of urgent and recovery surgery. 2017;2(2–3):278–81 (In Russ.).

2. Tevis S.E., Cobian A.G., Truong H.P., Craven M.W., Kennedy G.D. Implications of multiple complications on the postoperative recovery of general surgery patients. Ann Surg. 2016;263(6):1213–8. DOI: 10.1097/SLA.0000000000001390

3. Yadeta D.A., Manyazewal T., Demessie D.B., Kleive D. Incidence and predictors of postoperative complications in Sub-Saharan Africa: a systematic review and meta-analysis. Front Health Serv. 2024;4:1353788. DOI: 10.3389/frhs.2024.1353788

4. Nam K., Jeon Y. Microcirculation during surgery. Anesth Pain Med. 2022;17(1):24–34. DOI: 10.17085/apm.22127

5. Bashirova L.I., Safonov A.S., Kamilova R.R., Lipatov D.O., Bakirov A.A., Samorodov A.V. Nutrient deficiency correction in ovarian cancer patients following surgical treatment: a clinical case. Creative surgery and oncology. 2022;12(1):81–6 (In Russ.). DOI: 10.24060/2076-3093-2022-12-1-81-86

6. Kanemoto M., Ida M., Naito Y., Kawaguchi M. The impact of preoperative nutrition status on abdominal surgery outcomes: A prospective cohort study. Nutr Clin Pract. 2023;38(3):628–35. DOI: 10.1002/ncp.10932

7. Aksu U., Yavuz-Aksu B., Goswami N. Microcirculation: current perspective in diagnostics, imaging, and clinical applications. J Clin Med. 2024;13(22):6762. DOI: 10.3390/jcm13226762

8. Donati A., Domizi R., Damiani E., Adrario E., Pelaia P., Ince C. From macrohemodynamic to the microcirculation. Crit Care Res Pract. 2013;2013:1–8. DOI: 10.1155/2013/892710

9. Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care. 2015;19(S3):S8. DOI: 10.1186/cc14726

10. Downey C.L., Bainbridge J., Jayne D.G., Meads D.M. Impact of inhospital postoperative complications on quality of life up to 12 months after major abdominal surgery. Br J Surg. 2023;110(9):1206–12. DOI: 10.1093/bjs/znad167

11. Van Hootegem S.J.M., Van Der Linde M., Schneider M.A., Kim J., Berlth F., Sugita Y., et al. Impact of postoperative complications on clinical outcomes after gastrectomy for cancer: multicentre study. Br J Surg. 2025;112(4):znaf043. DOI: 10.1093/bjs/znaf043

12. Kirchhoff P., Clavien P.A., Hahnloser D. Complications in colorectal surgery: risk factors and preventive strategies. Patient Saf Surg. 2010;4(1):5. DOI: 10.1186/1754-9493-4-5

13. Staiger R.D., Gerns E., Castrejón Subirà M., Domenghino A., Puhan M.A., Clavien P.A. Can early postoperative complications predict high morbidity and decrease failure to rescue following major abdominal surgery? Ann Surg. 2020;272(5):834–9. DOI: 10.1097/SLA.0000000000004254

14. Shimada H., Fukagawa T., Haga Y., Oba K. Does postoperative morbidity worsen the oncological outcome after radical surgery for gastrointestinal cancers? A systematic review of the literature. Ann Gastroenterol Surg. 2017;1(1):11–23. DOI: 10.1002/ags3.12002

15. Samorodov A.V., Urakov A.L., Zolotukhin K.N., Dashkin R.R., Ismagilov N.G., Abubakirova A.I., et al. Clinical and pathological analysis of sudden death after planned surgery. Creative surgery and oncology. 2020;10(2):154–61 (In Russ.). DOI: 10.24060/2076-3093-2020-10-2-154-161

16. Wang S., Xu L., Wang Q., Li J., Bai B., Li Z., et al. Postoperative complications and prognosis after radical gastrectomy for gastric cancer: a systematic review and meta-analysis of observational studies. World J Surg Oncol. 2019;17(1):52. DOI: 10.1186/s12957-019-1593-9

17. Shibasaki S., Suda K., Nakauchi M., Nakamura K., Kikuchi K., Inaba K., et al. Non-robotic minimally invasive gastrectomy as an independent risk factor for postoperative intra-abdominal infectious complications: A single-center, retrospective and propensity score-matched analysis. World J Gastroenterol. 2020;26(11):1172–84. DOI: 10.3748/wjg.v26.i11.1172

18. Skinner G.C., Liu Y.Z., Harzman A.E., Husain S.G., Gasior A.C., Cunningham L.A., et al. Clinical utility of laser speckle contrast imaging and real-time quantification of bowel perfusion in minimally invasive left-sided colorectal resections. Dis Colon Rectum. 2024;67(6):850–9. DOI: 10.1097/DCR.0000000000003098

19. Hackert T., Klaiber U., Hinz U., Strunk S., Loos M., Strobel O., et al. Portal vein resection in pancreatic cancer surgery: risk of thrombosis and radicality determine survival. Ann Surg. 2023;277(6):e1291–8. DOI: 10.1097/SLA.0000000000005444

20. Van Riel W.G., van Golen R.F., Reiniers M.J., Heger M., van Gulik T.M. How much ischemia can the liver tolerate during resection? Hepatobiliary Surg Nutr. 2016;5(1):58–71. DOI: 10.3978/j.issn.2304-3881.2015.07.05

21. Christ B., Collatz M., Dahmen U., Herrmann K.H., Höpfl S., König M., et al. Hepatectomy-induced alterations in hepatic perfusion and function — toward multi-scale computational modeling for a better prediction of post-hepatectomy liver function. Front Physiol. 2021;12:733868. DOI: 10.3389/fphys.2021.733868

22. Choi H., Hwang W. Perioperative inflammatory response and cancer recurrence in lung cancer surgery: a narrative review. Front Surg. 2022;9:888630. DOI: 10.3389/fsurg.2022.888630

23. Zolotukhin K.N., Krüger P., Samorodov A.V. Low level of antithrombin III as a warning sign for developing thrombotic complications in surgical patients. Creative surgery and oncology. 2018;8(1):52–6 (n Russ.). DOI: 10.24060/2076-3093-2018-8-1-52-56

24. Ylimartimo A.T., Nurkkala J., Koskela M., Lahtinen S., Kaakinen T., Vakkala M., et al. Postoperative complications and outcome after emergency laparotomy: a retrospective study. World J Surg. 2023;47(1):119– 29. DOI: 10.1007/s00268-022-06783-8

25. Grigor’ev EV, Lebedinskii KM, Schegolev AV, et al. Resuscitation and intensive care in acute massive blood loss in adults (clinical guidelines). Russian Journal of Anesthesiology and Reanimatology. 2020;1:5–24 (In Russ.). DOI: 10.17116/anaesthesiology20200115

26. Harrois A., Tanaka S., Duranteau J. The Microcirculation in hemorrhagic shock. In: Vincent J.L., ed. Annual update in intensive care and emergency medicine 2013. Berlin: Springer; 2013. P. 277–89. DOI: 10.1007/978-3-642-35109-9_22

27. Knežević D., Batičić L., Ćurko-Cofek B., Batinac T., Ljubačev A., Valenčić Seršić L., et al. The effect of coronary artery bypass surgery on interleukin-18 concentration and biomarkers related to vascular endothelial glycocalyx degradation. Int J Mol Sci. 2025;26(12):5453. DOI: 0.3390/ijms26125453

28. Kim H.B., Soh S., Kwak Y.L., Bae J.C., Kang S.H., Song J.W. High preoperative serum syndecan-1, a marker of endothelial glycocalyx degradation, and severe acute kidney injury after valvular heart surgery. J Clin Med. 2020;9(6):1803. DOI: 10.3390/jcm9061803

29. Heizmann O. Ischemic preconditioning-induced hyperperfusion correlates with hepatoprotection after liver resection. World J Gastroenterol. 2010;16(15):1871. DOI: 10.3748/wjg.v16.i15.1871

30. Toh C., Toh J.M.H., Abrams S.T. Disseminated intravascular coagulation — what can we do? HemaSphere. 2019;3(S2):92–4. DOI: 10.1097/HS9.0000000000000232

31. Assimakopoulos S.F., Triantos C., Thomopoulos K., Fligou F., Maroulis I., Marangos M., et al. Gut-origin sepsis in the critically ill patient: pathophysiology and treatment. Infection. 2018;46(6):751–60. DOI: 10.1007/s15010-018-1178-5

32. Alhamdi Y., Toh C.H. Recent advances in pathophysiology of disseminated intravascular coagulation: the role of circulating histones and neutrophil extracellular traps. F1000Research. 2017;6:2143. DOI: 10.12688/f1000research.12498.1

33. Chatpun S., Cabrales P. Effects of plasma viscosity modulation on cardiac function during moderate hemodilution. Asian J Transfus Sci. 2010;4(2):102. DOI: 10.4103/0973-6247.67034

34. Vollmar B., Menger M.D. Intestinal ischemia/reperfusion: microcirculatory pathology and functional consequences. Langenbecks Arch Surg. 2011;396(1):13–29. DOI: 10.1007/s00423-010-0727-x

35. Zacharenko A.A., Belyaev M.A., Trushin A.A., Zaytcev D.A., Kursenko R.V., Sidorov V.V., et al. Combined assessment of intestinal viability using laser doppler flowmetry and laser fluorescence spectroscopy. Regional blood circulation and microcirculation. 2021;20(2):70–6 (In Russ.). DOI: 10.24884/1682-6655-2021-20-2-70-76

36. Heeman W., Wildeboer A.C.L., Al-Taher M., Calon J.E.M., Stassen L.P.S., Diana M., et al. Experimental evaluation of laparoscopic laser speckle contrast imaging to visualize perfusion deficits during intestinal surgery. Surg Endosc. 2023;37(2):950–7. DOI: 10.1007/s00464-022-09536-9

37. Holländer S., Von Heesen M., Gäbelein G., Mercier J., Laschke M.W., Menger M.D.. et al. Perioperative treatment with cilostazol reverses steatosis and improves liver regeneration after major hepatectomy in a steatotic rat model. Sci Rep. 2025;15(1):2753. DOI: 10.1038/s41598-025-87135-z

38. Dang P.T., Lopez B.E., Togashi K. A Decrease in effective renal perfusion pressure is associated with increased acute kidney injury in patients undergoing cardiac surgery. Cureus. 2023;15(9):e45036 DOI: 10.7759/cureus.45036

39. Yu Y., Li C., Zhu S., Jin L., Hu Y., Ling X., et al. Diagnosis, pathophysiology and preventive strategies for cardiac surgery-associated acute kidney injury: a narrative review. Eur J Med Res. 2023;28(1):45. DOI: 10.1186/s40001-023-00990-2

40. Moroz V.V., Ryzhkov I.A. Acute blood loss: regional blood flow and microcirculation (review, part II). General reanimatology. 2016;12(5):65–94 (In Russ.). DOI: 10.15360/1813-9779-2016-5-65-94

41. Ince C., Boerma E.C., Cecconi M., De Backer D., Shapiro N.I., Duranteau J., et al. Cardiovascular dynamics section of the ESICM. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2018;44(3):281–99. DOI: 10.1007/s00134-018-5070-7

42. Flick M., Jannsen G.P., Krause L., Montomoli J., Pollok F., Moll-Khosrawi P.. et al. The effect of major abdominal surgery on the sublingual microcirculation: an observational study. Can J Anesth Can Anesth. 2025;72(5):768–79. DOI: 10.1007/s12630-025-02941-3

43. Bruno R.R, Wollborn J., Fengler K., Flick M., Wunder C., Allgäuer S., et al. Direct assessment of microcirculation in shock: a randomizedcontrolled multicenter study. Intensive Care Med. 2023;49(6):645–55. DOI: 10.1007/s00134-023-07098-5

44. Wagner M., Anzinger E., Hey F., Reiter K., Wermelt J.Z., PastorVillaescusa B., et al. Monitoring of the microcirculation in children undergoing major abdominal and thoracic surgery: A pilot study. Clin Hemorheol Microcirc. 2023;83(3):217–29. DOI: 10.3233/CH-221617

45. Liu Y.Z., Shah S.K., Sanders C.M., Nwaiwu C.A., Dechert A.F., Mehrotra S., et al. Utility and usability of laser speckle contrast imaging (LSCI) for displaying real-time tissue perfusion/blood flow in robotassisted surgery (RAS): comparison to indocyanine green (ICG) and use in laparoscopic surgery. Surg Endosc. 2023;37(6):4803–11. DOI: 10.1007/s00464-022-09590-3

46. Tavy A.L., De Bruin A.F., Boerma E.C., Ince C., Hilty M.P., Noordzij P.G., et al. Association between serosal intestinal microcirculation and blood pressure during major abdominal surgery. J Intensive Med. 2021 July;1(1):59–64. DOI: 10.1016/j.jointm.2021.03.003

47. Krupatkin A.I., Sidorov V.V. Functional diagnostics of the state of microcirculatory-tissue systems: Oscillations, information, nonlinearity (Physician’s Guide). M.: LIBROKOM; 2013 (In Russ.).

48. Cracowski J., Roustit M. Current methods to assess human cutaneous blood flow: an updated focus on laser‐based‐techniques. Microcirculation. 2016;23(5):337–44. DOI: 10.1111/micc.12257

49. Kosovskikh A.A., Kan S.L., Churlyaev Yu.A., Zoloyeva O.S., Baranov A.A., Kruglyakov O.O. The Functional state of intestinal microcirculation in diffuse peritonitis. General Reanimatology. 2012;8(2):33 (In Russ.). DOI: 10.15360/1813-9779-2012-2-33

50. Ladozhskaya-Gapeenko E.E. Microcirculation dysfunction in critical conditions (literature review). Messenger of anesthesiology and resuscitation. 2024;21(6):116–21 (In Russ.). DOI: 10.24884/2078-5658-2024-21-6-116-121

51. Medvedev K.I., Zavialov A. A. Functional disorders after mastectomy. Methods for their correction. A.I. Burnasyan Federal Medical Biophysical Center Clinical Bulletin. 2025.3:62–6 (In Russ.). DOI: 10.33266/2782-6430-2025-3-62-66

52. Guven G., Dijkstra A., Kuijper T.M., Trommel N., Van Baar M.E., Topeli A., et al. Comparison of laser speckle contrast imaging with laser Doppler perfusion imaging for tissue perfusion measurement. Microcirculation. 2023;30(1):e12795. DOI: 10.1111/micc.12795

53. Ryzhkov I.A., Golubova N.V., Lapin K.N., Kalabushev S.N., Dremin V.V., Potapova E.V., et al. Skin microcirculatory parameters as diagnostic markers of central and cerebral circulatory disorders in hemorrhagic shock. General Reanimatology. 2025;21(3):11–25 (In Russ.). DOI: 10.15360/1813-9779-2025-3-2559

54. Paramasivam R., Jaensch C., Madsen A.H., Ørntoft M.W. Intraoperative assessment of anastomotic microcirculation during right hemicolectomy with real‐time laser speckle contrast imaging is safe and feasible. Colorectal Dis. 2025 July;27(7):e70162. DOI: 10.1111/codi.70162

55. Baiocchi G.L., Diana M., Boni L. Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: State of the art and future directions. World J Gastroenterol. 2018;24(27):2921–30. DOI: 10.3748/wjg.v24.i27.2921

56. De Backer D., Ospina-Tascon G., Salgado D., Favory R., Creteur J., Vincent J.L. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010;36(11):1813–25. DOI: 10.1007/s00134-010-2005-3

57. Li B., Dai Y., Cai W., Sun M., Sun J. Monitoring of perioperative tissue perfusion and impact on patient outcomes. J Cardiothorac Surg. 2025;20(1):100. DOI: 10.1186/s13019-025-03353-6

58. Hernández G., Ospina-Tascón G.A., Damiani L.P., Estenssoro E., Dubin A., Hurtado J., et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: The ANDROMEDA-SHOCK Randomized Clinical Trial. JAMA. 2019;321(7):654. DOI: 10.1001/jama.2019.0071

59. Wittayachamnankul B., Chentanakij B., Sruamsiri K., Chattipakorn N. The role of central venous oxygen saturation, blood lactate, and central venous-to-arterial carbon dioxide partial pressure difference as a goal and prognosis of sepsis treatment. J Crit Care. 2016;36:223–9. DOI: 10.1016/j.jcrc.2016.08.002

60. Sufiyarov I.F., Khasanov A.G., Nurtdinov M.A., Samorodov A.V., Jamalova G.R. High level of glycosaminoglycans of blood serum as an independent predictor of the developing peritoneum adhesive disease. Creative surgery and oncology. 2017;7(2):48–53 (In Russ.). DOI: 10.24060/2076-3093-2017-7-2-48-53

61. Kim H.J., Lee B., Lee B.H., Kim S.Y., Jun B., Choi Y.S. The effect of tranexamic acid administration on early endothelial damage following posterior lumbar fusion surgery. J Clin Med. 2021;10(7):1415. DOI: 10.3390/jcm10071415

62. Weinberg L., Yanase F., Tosif S., Riedel B., Bellomo R., Hahn R.G. Trajectory of plasma syndecan‐1 and heparan sulphate during major surgery: A retrospective observational study. Acta Anaesthesiol Scand. 2023;67(1):4–11. DOI: 10.1111/aas.14150

63. Eriksson S., Jan N., Gert L., Sturesson C. Laser speckle contrast imaging for intraoperative assessment of liver microcirculation: a clinical pilot study. Med Devices Evid Res. 2014;7:257–61. DOI: 10.2147/MDER.S63393

64. Yajnik V., Maarouf R. Sepsis and the microcirculation: the impact on outcomes. Curr Opin Anaesthesiol. 2022;35(2):230–5. DOI: 10.1097/ACO.0000000000001098

65. Trzeciak S., McCoy J.V., Phillip Dellinger R., Arnold R.C., Rizzuto M., Abate N.L., et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34(12):2210–7. DOI: 10.1007/s00134-008-1193-6

66. Cabrales P., Intaglietta M., Tsai A.G. Transfusion restores blood viscosity and reinstates microvascular conditions from hemorrhagic shock independent of oxygen carrying capacity. Resuscitation. 2007;75(1):124–34. DOI: 10.1016/j.resuscitation.2007.03.010

67. Van Leeuwen A.L.I, Dekker N.A.M., Jansma E.P., Boer C., Van Den Brom C.E. Therapeutic interventions to restore microcirculatory perfusion following experimental hemorrhagic shock and fluid resuscitation: A systematic review. Microcirculation. 2020;27(8):e12650. DOI: 10.1111/micc.12650

68. Robertson F., Fuller B., Davidson B. An evaluation of ischaemic preconditioning as a method of reducing ischaemia reperfusion injury in liver surgery and transplantation. J Clin Med. 2017;6(7):69. DOI: 10.3390/jcm6070069

69. Von Heesen M., Dold S., Müller S., Scheuer C., Kollmar O., Schilling M.K., et al. Cilostazol improves hepatic blood perfusion, microcirculation, and liver regeneration after major hepatectomy in rats. Liver Transpl. 2015;21(6):792–800. DOI: 10.1002/lt.24114

70. Flick M., Duranteau J., Scheeren T.W.L., Saugel B. Monitoring of the sublingual microcirculation during cardiac surgery: current knowledge and future directions. J Cardiothorac Vasc Anesth. 2020;34(10):2754– 65. DOI: 10.1053/j.jvca.2019.10.038

71. Bednarczyk J.M., Fridfinnson J.A., Kumar A., Blanchard L., Rabbani R., Bell D., et al. Incorporating dynamic assessment of fluid responsiveness into goal-directed therapy: a systematic review and meta-analysis. Crit Care Med. 2017;45(9):1538–45. DOI: 10.1097/CCM.0000000000002554

72. Jhanji S., Vivian-Smith A., Lucena-Amaro S., Watson D., Hinds C.J., Pearse R.M. Haemodynamic optimisation improves tissue microvascular flow and oxygenation after major surgery: a randomised controlled trial. Crit Care. 2010;14(4):R151. DOI: 10.1186/cc9220

73. Ryzhkov I., Lapin K., Tsokolaeva Z., Kalabushev S., Ostrova I., Ershov A., et al. Microvascular and metabolic effects of a balanced electrolyte solution and heparinized autologous blood in hemorrhagic shock. Archiv EuroMedica. 2022;12(3):e1. DOI: 10.35630/2199-885X/2022/12/3.10

74. László I., Janovszky Á., Lovas A., Vargán V., Öveges N., Tánczos T., et al. Effects of goal-directed crystalloid vs. colloid fluid therapy on microcirculation during free flap surgery: A randomised clinical trial. Eur J Anaesthesiol. 2019;36(8):592–604. DOI: 10.1097/EJA.0000000000001024

75. Ruslan M., Baharuddin K., Noor N., Yazid M., Md Noh A.Y., Rahman A. Norepinephrine in Septic Shock: A Systematic Review and Meta-analysis. West J Emerg Med. 2021;22(2):196–203. DOI: 10.5811/westjem.2020.10.47825


Review

For citations:


Ryzhkov I.A., Varnakova L.A., Fonova P.A. Effects of Microcirculation Disorders on the Development of Postoperative Complications in Abdominal Surgery. Creative surgery and oncology. 2025;15(4):402-414. (In Russ.) https://doi.org/10.24060/2076-3093-2025-15-4-402-414

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)