Functional Hydroxyapatite Coating of Implants Using Cold Spraying
https://doi.org/10.24060/2076-3093-2025-15-4-415-424
Abstract
The risk of developing postoperative complications directly depends on the biocompatibility of implant systems, which is largely determined by the condition and properties of their surface. Hydroxyapatite (HA) coatings are characterized by maximum similarity of structural and functional properties to those of bone tissue, which determines their wide application in biomedical engineering. Therefore, HA as a modifying surface coating can significantly increase the biocompatibility of implants and activate osseointegration processes. Today, thin HA coatings are mainly applied using thermal spraying methods at temperatures close to the melting point of the original material. However, exposure to high temperatures decreases the biocompatibility of the final coating and limits the introduction of heat-labile bioactive additives into its composition. In this regard, cold spraying technologies represent a promising direction, potentially superior to standard thermal methods. However, high brittleness of HA significantly complicates the low-temperature application of strong and uniform coatings. Thus, the selection of an optimal technological approach and establishment of rational spraying parameters represent key conditions for the formation of coatings with the required physicochemical characteristics increasing the efficiency of osseointegration. This paper presents a systematic analysis of experimental studies aimed at developing a conceptual framework for selecting powder, substrate and cold spraying parameters aimed at obtaining high-quality HA coatings with improved biomedical properties.
Keywords
About the Authors
A. R. BilyalovRussian Federation
Azat R. Bilyalov — Cand. Sci. (Med.), Assoc. Prof., Department of Traumatology and Orthopedics
Ufa
A. T. Bikmeev
Russian Federation
Alexandr T. Bikmeev — Cand. Sci. (Phys. and Math.), Assoc. Prof., Senior Researcher, Laboratory of Mathematical Simulation
Ufa
I. Sh. Akhatov
Russian Federation
Iskander Sh. Akhatov — Dr. Sci. (Phys. and Math.), Prof., Chief Researcher, Laboratory of Mathematical Simulation
Ufa
D. V. Dzhurinskiy
Russian Federation
Dmitry V. Dzhurinskiy — Cand. Sci. (Engineering), Assoc. Prof., Senior Researcher, Laboratory of Mathematical Simulation
Ufa
R. S. Yurovskikh
Russian Federation
Roman S. Yurovskikh — Laboratory of Mathematical Simulation
Ufa
B. Sh. Minasov
Russian Federation
Bulat Sh. Minasov — Dr. Sci. (Med.), Prof., Department of Traumatology and Orthopedics
Ufa
V. N. Akbashev
Russian Federation
Vladislav N. Akbashev — Department of Traumatology and Orthopedics
Ufa
M. F. Galautdinov
Russian Federation
Mars F. Galautdinov — Laboratory of Additive Technologies
Ufa
References
1. Joint Replacement Surgery. 2024. [cited 2024 Dec 1]. Available from https://rheumatology.org/patients/jointreplacementsurger
2. Matharu G.S., Culliford D.J., Blom A.W., Judge A. A Judge Projections for primary hip and knee replacement surgery up to the year 2060: an analysis based on data from The National Joint Registry for England, Wales, Northern Ireland and the Isle of Man. Ann R Coll Surg Engl. 2022;104(6):443–8. DOI: 10.1308/rcsann.2021.0206
3. Feng B., Zhu W., Bian Y.Y., Chang X., Cheng K.Y., Weng X.S. China artificial joint annual data report. Chin Med J (Engl). 2020;134(6):752–3. DOI: 10.1097/CM9.0000000000001196
4. Shakya H., Chen A., Zhou Z. The increase in total knee replacement surgery in China. a 10year real world study. Open J Othoped. 2024;14(06):270–86. DOI: 10.4236/ojo.2024.146024
5. Curlewis K., Leung B., Sinclair L. Thornhill C., Chan G., Ricketts D. Systemic medical complications following joint replacement: a review of the evidence. Ann R Coll Surg Engl. 2023;105(3):191–5. DOI: 10.1308/rcsann.2022.0012
6. Long H., Xie D., Zeng C, Wang H., Lei G., Yang T. Burden and characteristics of revision total knee arthroplasty in China: a national study based on hospitalized cases. J Arthroplasty. 2023;38(7):1320–5.e2. DOI: 10.1016/j.arth.2023.02.052
7. Pramanik K. Stem cell and tissue engineering. Bone, cartilage, and associated joint tissue defects. Boca Raton, FL: CRC Press; 2024. 354 p.
8. Lv Y., Chen Y., Zheng Y., Li Q., Lei T., Yin P. Evaluation of the antibacterial properties and invitro cell compatibilities of doped copper oxide/ hydroxyapatite composites. Colloids Surf B Biointerfaces. 2022;209(Pt 2):112194. DOI: 10.1016/j.colsurfb.2021.112194
9. Djošić M., Janković A., Stevanović M., Stojanović J., Vukašinović- Sekulić M., Kojić V., et al. Hydroxyapatite/poly(vinyl alcohol)/chitosan coating with gentamicin for orthopedic implants. Mater Chem Phys. 2023;303:127766. DOI: 10.1016/j.matchemphys.2023.127766
10. Khamkongkaeo A., Jiamprasertboon A., Jinakul N., Srabua P., Tantavisut S., Wongrakpanich A. Antibioticloaded hydroxyapatite scaffolds fabricated from Nile tilapia bones for orthopaedics. Int J Pharm X. 2023;5:100169. DOI: 10.1016/j.ijpx.2023.100169
11. Gadow R., Killinger A., Stiegler N. Hydroxyapatite coatings for biomedical applications deposited by different thermal spray techniques. Surf Coat Technol. 2010;205(4):1157–64. DOI: 10.1016/j.surfcoat.2010.03.059
12. Pal Singh R., Bala N. Comparative studies of cold and thermal sprayed hydroxyapatite coatings for biomedical applications — a review. Ceramic transactions. 2012;237:250–9. DOI: 10.1002/9781118511466.ch24
13. Vilardell A.M., Cinca N., GarciaGiralt N., Dosta S., Cano I.G., Nogués X., et al. Invitro comparison of hydroxyapatite coatings obtained by cold spray and conventional thermal spray technologies. Mater Sci Eng C Mater Biol Appl. 2020;107:110306. DOI: 10.1016/j.msec.2019.110306
14. Awasthi S., Pandey S.K., Arunan E., Srivastava C. A review on hydroxyapatite coatings for the biomedical applications: experimental and theoretical perspectives. J Mater Chem B. 2021;9(2):228–49. DOI: 10.1039/d0tb02407d
15. Sharath Kumar J., Kumar R., Verma R. Surface modification aspects for improving biomedical properties in implants: a review. Acta Metall. Sin. (Engl. Lett.). 2024;37(2):213–41. DOI: 10.1007/s40195023016317
16. Prashar G., Vasudev H. Understanding cold spray technology for hydroxyapatite deposition: review paper. J Electrochem Sci Eng. 2023;13(1):41–62. DOI: 10.5599/jese.1424
17. Sandhu H.S., Goyal D., Sharma A., Goyal T., Jarial S., Sharda A. Sustainable development in cold gas dynamic spray coating process for biomedical applications: challenges and future perspective review. Int J Interact Des Manuf. 2023:1–17. DOI: 10.1007/s12008023014747
18. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. DOI: 10.1136/bmj.n71
19. Li W., Yang K., Yin S., Yanga X., Xua Y., Lupoib R. Solid-state additive manufacturing and repairing by cold spraying: A review. J Mater Sci Technol. 2018;34(3):440–57. DOI: 10.1016/j.jmst.2017.09.015
20. Wang Z., Mao P., Huang C., Li W., Lupoi R., Yin Sh. Deposition mechanism of ceramic reinforced metal matrix composites via cold spraying. Addit Manuf. 2024;85:104167. DOI: 10.1016/j.addma.2024.104167
21. Wu D., Zhang J., Li W., Xu Y., Yang X., Su Y. Morphology of ceramic regulates the deposition behavior and mechanical properties of cold spray additive manufactured Al2O3/2024 aluminum matrix composites. Mater Charact. 2024;215:114197. DOI: 10.1016/j.matchar.2024.114197
22. Sanpo N., Tan M.L., Cheang P., Khor K.A. Antibacterial property of cold sprayed HAAg/PEEK coating. J Therm Spray Tech. 2009;18(1):10– 5. DOI: 10.1007/s1166600892830
23. Noorakma A.C.W., Zuhailawati H., Aishvarya V., Dhindaw B.K. Hydroxyapatite coated magnesium based biodegradable alloy: cold spray deposition and simulated body fluid studies. J Mater Eng Perform. 2013;22(10):2997–3004. DOI: 10.1007/s1166501305899
24. Lee J.H., Jang H.L., Lee K.M., Baek H.R., Jin K., Hong K.S., et al. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology. Acta Biomater. 2013;9(4):6177–87. DOI: 10.1016/j.actbio.2012.11.030
25. Lee J.H., Jang H.L., Lee K.M., Baek H.R., Jin K., Noh J.H. Cold-spray coating of hydroxyapatite on a threedimensional polyetheretherketone implant and its biocompatibility evaluated by in vitro and in vivo mini-pig model. J Biomed Mater Res B Appl Biomater. 2017;105(3):647–57. DOI: 10.1002/jbm.b.33589
26. Hasniyati M., Zuhailawati H., Sivakumar R., Mohd Moor F. Cold spray deposition of hydroxyapatite powder onto magnesium substrates for biomaterial applications. Surf Eng. 2015;31(11):867–74. DOI: 10.1179/1743294415Y.0000000068
27. Hasniyati M.R., Hussain Z., Ramakrishnan S., Dhindaw B.K., Mohd Noor F. Design of experiment (DOE) study of hydroxyapatitecoated magnesium by cold spray deposition. MSF. 2015;819:341–6. DOI: 10.4028/www.scientific.net/MSF.819.341
28. Hasniyati M.R., Zuhailawati H., Sivakumar R., Dhindaw B.K. Optimization of multiple responses using overlaid contour plot and steepest methods analysis on hydroxyapatite coated magnesium via cold spray deposition. Surf Coat Technol. 2015;280:250–5. DOI: 10.1016/j.surfcoat.2015.09.006
29. Moreau D., Corté L., Borit F., Guipont V. Cold spray of agglomerated submicronic hydroxyapatite powders for biomedical applications. In: Proceeding of the conference ITSC 2016, DVS. Shanghai; 2016. P. 6. DOI: 10.31399/asm.cp.itsc2016p0006
30. Moreau D., Borit F., Corté L., Guipont V. Cold spray coating of submicronic ceramic particles on poly(vinyl alcohol) in dry and hydrogel states. J Therm Spray Tech. 2017;26(5):958–69. DOI: 10.1007/s1166601705518
31. Chen X., Ji G., Bai X., Yao H., Chen Q., Zou Y.Microstructures and properties of cold spray nanostructured HA coatings. J Therm Spray Tech. 2018;27(8):1344–55. DOI: 10.1007/s1166601807761
32. Vilardell A.M., Cinca N., Dosta S.., Cano Cano I.G. Feasibility of using low pressure cold gas spray for the spraying of thick ceramic hydroxyapatite coatings. Int J Applied Ceramic Tech. 2019;16(1):221–9. DOI: 10.1111/ijac.13088
33. Chen Q.Y., Zou Y.L., Chen X., Bai X.-B. Morphological, structural and mechanical characterization of cold sprayed hydroxyapatite coating. Surf Coat Technol. 2019;357:910–23. DOI: 10.1016/j.surfcoat.2018.10.056
34. Paterlini A., Alexis J., Balcaen Y., Ghislaine B. Cold spraying of thick biomimetic and stoichiometric apatite coatings for orthopaedic implants. Coatings. 2022;12(6):722. DOI: 10.3390/coatings12060722
35. Behera A.K., Mantry S., Roy S., Pati S. Improving bond strength and deposition efficiency of ceramic coatings via low pressure cold spraying: a study on hydroxyapatite coatings with CuZn blends. Surf Coat Technol. 2024;494(Part.2):131430. DOI: 10.1016/j.surfcoat.2024.131430
36. Henao J., GiraldoBetancur A.L., PoblanoSalas C.A., Forero P. On the deposition of coldsprayed hydroxyapatite coatings. Surf Coat Technol. 2024;476:130289. DOI: 10.1016/j.surfcoat.2023.130289
37. Henao J., GiraldoBetancur A., PoblanoSalas C.A., Espinosa-Arbelaez D.G. On the role of substrate in hydroxyapatite coating formation by cold spray. Coatings. 2024;14(10):1302. DOI: 10.3390/coatings14101302
38. Choudhuri A., Mohanty P.S., Karthikeyan J. Bioceramic composite coatings by cold spray technology. Proceeding of the International Thermal Spray Conference. 2009; p. 6. DOI: 10.1361/cp2009itsc0391
39. Zhou X., Mohanty P. Electrochemical behavior of cold sprayed hydroxyapatite/titanium composite in Hanks’ solution. Electrochim Acta. 2012;65:134–40. DOI: 10.1016/j.electacta.2012.01.018
40. Gardon M., Concustell A., Dosta S., Cinca N., Cano I.G., Guilemany J.M. Improved bonding strength of bioactive cermet Cold Gas Spray coatings. Mater Sci Eng C Mater Biol Appl. 2014;45:117–21. DOI: 10.1016/j.msec.2014.08.053
41. Guillem Marti J., Cinca N., Punset M., Cano I.G., Gil F.J., Guilemany J.M., et al. Porous titaniumhydroxyapatite composite coating obtained on titanium by cold gas spray with high bond strength for biomedical applications. Colloids Surf B Biointerfaces. 2019;180:245– 253. DOI: 10.1016/j.colsurfb.2019.04.048.
42. Judd K.G., Sharma M.M., Eden T.J. Multifunctional bioceramic composite coatings deposited by cold spray. KEM. 2019;813:228–33. DOI: 10.4028/www.scientific.net/KEM.813.228
43. Forero Sossa P.A., Giraldo Betancur A.L., Poblano Salas C.A., PoblanoSalas C.A. Nozzle geometry and particle size influence on the behavior of low pressure cold sprayed hydroxyapatite particles. Coatings. 2022;12(12):1845. DOI: 10.3390/coatings12121845
Review
For citations:
Bilyalov A.R., Bikmeev A.T., Akhatov I.Sh., Dzhurinskiy D.V., Yurovskikh R.S., Minasov B.Sh., Akbashev V.N., Galautdinov M.F. Functional Hydroxyapatite Coating of Implants Using Cold Spraying. Creative surgery and oncology. 2025;15(4):415-424. (In Russ.) https://doi.org/10.24060/2076-3093-2025-15-4-415-424


























