BIORESORBABLE VASCULAR SCAFFOLDS (SYSTEMATIC LITERATURE REVIEW)
https://doi.org/10.24060/2076-3093-2017-7-4-53-62
Abstract
Introduction: Modern interventional surgery is one of the most dynamically developing areas of modern medicine. Evidence of this is the bioresorbable stent appearance in its stockpile – intravascular frames, which provide temporary mechanical support and the delivery of cytotoxic substances in the vascular wall during its regeneration. The emergence of this technology in English literature is often called the fourth revolution in x-ray surgery. In this literature review, the authors tried to reflect modern ideas about safety, indications and disadvantages of bioresorbable scaffolds.
Methods: This review presents data of 65 articles on bioresorbable intravascular frames in pubmed. The preference was given to the data of multicenter studies and international registries and records of clinical cases of complications associated with implantation of bioresorbable intravascular scaffolds.
Results: This literature review presents the latest English-language publications on the use of bioresorbable intravascular scaffolds in the treatment of ischemic heart disease, and it lists the main stages of their development too.
About the Authors
Vladimir PlechevRussian Federation
Plechev Vladimir Vyacheslavovich – Doctor of Medical Sciences, Professor, Head of the Hospital Surgery Department in Federal State Budgetary Educational Institution of Higher Education Bashkir State Medical University.
3 Lenin st., Ufa, 450008.
Irina N. Nikolaeva
Russian Federation
Nikolaeva Irina Evgenevna – Candidate of Medical Sciences, Chief Physician of the Republic Cardiological Center.
96 Stepan Kuvykin st., Ufa, 450106.
Igor V. Buzaev
Russian Federation
Buzaev Igor Vyacheslavovich – Candidate of Medical Sciences, Head of the X-ray Surgical Methods of Diagnostics and Treatment Department №1, Republic Cardiological Center.
96 Stepan Kuvykin st., Ufa, 450106.
Ilgiz G. Zagitov
Russian Federation
Zagitov Ilgiz Gayfullovich – X-ray Endovascular Diagnostics and Treatment Doctor of the X-ray Surgical Methods of Diagnostics and Treatment Department №1, Republic Cardiological Center.
96 Stepan Kuvykin st., Ufa, 450106.
Roman Yu. Rizberg
Russian Federation
Rizberg Roman Yurevich - Candidate of Medical Sciences, X-ray Endovascular Diagnostics and Treatment Doctor of the X-ray Surgical Methods of Diagnostics and Treatment Department №1, Republic Cardiological Center.
96 Stepan Kuvykin st., Ufa, 450106.
Inna E. Yamanaeva
Russian Federation
Yamanaeva Inna Evgenevna - Candidate of Medical Sciences, Cardiologist of the X-ray Surgical Methods of Diagnostics and Treatment Department №1, Republic Cardiological Center.
96 Stepan Kuvykin st., Ufa, 450106.
References
1. Serruys P.W, Garcia-Garcia H.M, Onuma Y. From metallic cages to transient bioresorbable scaffolds: Change in paradigm of coronary revascularization in the upcoming decade? Eur Heart J. 2012;33 (1):16-25. DOI: 10.1093/eurheartj/ehr384.
2. Ormiston J.A, Serruys P.W.S. Bioabsorbable coronary stents. Circ Cardiovasc Interv. 2009;2(3): 255– 60. DOI:10.1161/CIRCINTERVENTIONS.109.859173.
3. Sigwart U., Puel J., Mirkovitch V., Joffre F., Kappenberger L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med. 1987;316(12):701–6. DOI: 10.1056/NEJM198703193161201.
4. Rensing B.J, Vos J., Smits P.C, Foley D.P, Van Den Brand M.J.B.M, Van Der Giessen W.J., et al. Coronary restenosis elimination with a sirolimus eluting stent: First European human experience with 6-month angiographic and intravascular ultrasonic followup. Eur Heart J. 2001;22(22):2125–30. DOI: 10.1053/euhj.2001.2892
5. Radu M.D. The Clinical Atlas of Intravascular Optical Coherence Tomography (OCT) for iPad. Eur Heart J. 2012;33(10):1174-5. DOI: 10.1093/eurheartj/ehs102.
6. Ramcharitar S., Garcia-Garcia H.M., Nakazawa G., Kukreja N., Ligthart J., Virmani R., et al. Ultrasonic and pathological evidence of a neo-intimal plaque rupture in patients with bare metal stents. EuroIntervention. 2007;3(2):290-1. PMID: 19758954.
7. Nakazawa G., Otsuka F., Nakano M., Vorpahl M., Yazdani S.K., Ladich E., et al. The pathology of neoatherosclerosis in human coronary implants baremetal and drug-eluting stents. J Am Coll Cardiol. 2011;57(11):1314–22. DOI: 10.1016/j.jacc.2011.01.011.
8. Wentzel J.J., Whelan D.M., van der Giessen W.J., van Beusekom H.M.M., Andhyiswara I., Serruys P.W., et al. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J Biomech. 2000;33(10):1287-95. PMID: 10899339.
9. Samady H., Eshtehardi P., McDaniel M.C., Suo J., Dhawan S.S., Maynard C., et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation. 2011;124(7):779-88. DOI:10.1161/CIRCULATIONAHA.111.021824.
10. Gyĭngyĭsi M., Yang P., Khorsand A., Glogar D. Longitudinal straightening effect of stents is an additional predictor for major adverse cardiac events. J Am Coll Cardiol. 2000;35(6):1580–9. DOI:. org/10.1016/S0735-1097(00)00570-2.
11. Nam D., Ni C.-W., Rezvan A., Suo J., Budzyn K., Llanos A., et al. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol. 2009;297(4):1535-43. DOI: 10.1152/ajpheart.00510.2009.
12. Dudek D., Onuma Y., Ormiston J.A., Thuesen L., Miquel-Hebert K., Serruys P.W. Four-year clinical follow-up of the ABSORB everolimus-eluting bioresorbable vascular scaffold in patients with de novo coronary artery disease: The ABSORB trial. EuroIntervention. 2012;7(9):1060-1. DOI: 10.4244/ EIJV7I9A168.
13. Bourantas C.V., Papafaklis M.I., Garcia-Garcia H.M., Farooq V., Diletti R., Muramatsu T., et al. Short- and long-term implications of a bioresorbable vascular scaffold implantation on the local endothelial shear stress patterns. JACC Cardiovasc Interv. 2014;7(1):100– 1. DOI: 10.1016/j.jcin.2013.01.139.
14. Waksman R. Biodegradable stents: they do their job and disappear. J Invasive Cardiol. 2006;18(2):70-4. PMID: 16446520.
15. Stack R.S,, Califf R.M,, Phillips H.R,, Pryor D.B,, Quigley P.J,, Bauman R.P., et al. Interventional cardiac catheterization at Duke Medical Center. Am J Cardiol. 1988;62(10, Pt 2):3F–24F. PMID: 2972185.
16. van der Giessen W.J., Slager C.J., van Beusekom H.M., van Ingen Schenau D.S., Huijts R.A., Schuurbiers J.C., et al. Development of a polymer endovascular prosthesis and its implantation in porcine arteries. J Interv Cardiol. 1992;5(3):175–85. PMID: 10150957.
17. van der Giessen W.J., Lincoff A.M., Schwartz R.S., van Beusekom H.M., Serruys P.W., Holmes D.R., et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation. 1996;94(7):16907. PMID: 8840862.
18. Waksman R. Biodegradable stents: they do their job and disappear. J Invasive Cardiol. 2006;18(2):70-4. PMID: 16446520.
19. Tamai H., Igaki K., Kyo E., Kosuga K., Kawashima A., Matsui S., et al. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation. 2000;102(4):399-404. DOI:10.1161/01.CIR.102.4.399.
20. Nishio S., Kosuga K., Igaki K., Okada M., Kyo E., Tsuji T., et al. Long-term (>10 Years) clinical outcomes of first-in-human biodegradable polyl-lactic acid coronary stents: Igaki-Tamai stents. Circulation. 2012;125(19):2343–52. DOI: 10.1161/CIRCULATIONAHA.110.000901.
21. Cook S., Ladich E., Nakazawa G., Eshtehardi P., Neidhart M., Vogel R., et al. Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drugeluting stent thrombosis. Circulation. 2009;120(5):391– 9. DOI: 10.1161/CIRCULATIONAHA.109.854398.
22. Werner M., Micari A., Cioppa A., Vadalĭ G., Schmidt A., Sievert H., et al. Evaluation of the biodegradable peripheral Igaki-Tamai stent in the treatment of de novo lesions in the superficial femoral artery: The GAIA study. JACC Cardiovasc Interv. 2014;7(3):305-12. DOI: 10.1016/j.jcin.2013.09.009.
23. Hildick-Smith D., Lassen J.F., Koo B.K. One or two stents for coronary bifurcation lesions? EuroIntervention. 2010;6(Suppl J(8):J61-4. DOI:10.1016/S0735-1097(00)00534-9.
24. Oberhauser J.P., Hossainy S., Rapoza R.J. Design principles and performance of bioresorbable polymeric vascular scaffolds. EuroIntervention. 2009;5(Suppl F):F15-22. DOI: 10.4244/EIJV5IFA3.
25. Abizaid A., Ribamar Costa J., Bartorelli A.L., Whitbourn R., van Geuns R.J., Chevalier B., et al. The ABSORB EXTEND study: preliminary report of the twelve-month clinical outcomes in the first 512 patients enrolled. EuroIntervention. 2015;10(12):1396-401. DOI: 10.4244/EIJV10I12A243.
26. Jin Jang W., Hoon Yang J., Choi S.-H., Bin Song Y., Hahn J.-Y., Choi J.-H., et al. Fate of bioresorbable vascular scaffold metallic radio-opaque markers at the site of implantation after bioresorption. J Am Coll Cardiol Intv. 2015;8(8):271-9. DOI: 10.1016/j.jcin.2015.04.010.
27. Serruys P.W., Onuma Y., Ormiston J.A., De Bruyne B., Regar E., Dudek D., et al. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: Six-month clinical and imaging outcomes. Circulation. 2010; 122(22):2301–12. DOI: 10.1161/CIRCULATIONAHA.110.970772.
28. Serruys P.W., Onuma Y., Dudek D., Smits P.C., Koolen J., Chevalier B., et al. Evaluation of the second generation of a bioresorbable everolimuseluting vascular scaffold for the treatment of de Novo Coronary Artery stenosis: 12-month clinical and imaging outcomes. J Am Coll Cardiol. 2011;58(15):1578-88. DOI: 10.1016/j.jacc.2011.05.050.
29. Gogas B.D., King S.B., Samady H. Bioresorbable polymeric scaffolds for coronary revascularization: Lessons learnt from ABSORB III, ABSORB China, and ABSORB Japan. Glob Cardiol Sci Pract. 2015;2015(5):62. DOI: 10.5339/gcsp.2015.62.
30. Kereiakes D.J., Ellis S.G., Popma J.J., Fitzgerald P.J., Samady H., Jones-McMeans J., et al. Evaluation of a fully bioresorbable vascular scaffold in patients with coronary artery disease: Design of and rationale for the ABSORB III randomized trial. Am Heart J. 2015;170(4):641-651. DOI: 10.1016/j.ahj.2015.07.013.
31. Kimura T., Kozuma K., Tanabe K., Nakamura S., Yamane M., Muramatsu T., et al. A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur Heart J. 2015;36(47):3332–42. DOI: 10.1093/eurheartj/ehv435.
32. Testa L., Biondi Zoccai G., Tomai F., Ribichini F., Indolfi C., Tamburino C., et al. Italian Diffuse/ Multivessel Disease ABSORB Prospective Registry (ITDISAPPEARS). Study design and rationale. J Cardiovasc Med (Hagerstown). 2015;16(3):253–8. DOI: 10.2459/ JCM.0000000000000219.
33. Simsek C., Karanasos A., Magro M., GarciaGarcia H.M., Onuma Y., Regar E., et al. Longterm invasive follow-up of the everolimus-eluting bioresorbable vascular scaffold: five-year results of multiple invasive imaging modalities. EuroIntervention. 2016;11(9):996-1003. DOI: 10.4244/EIJY14M10_12.
34. Ruiz-Salmerĭn R.J., Pereira S., de Araujo D. Bioresorbable vascular scaffold collapse causes subacute thrombosis. J Invasive Cardiol. 2014;26(7):E98-9. PMID: 24993999.
35. Miyazaki T., Panoulas V.F., Sato K., Naganuma T., Latib A., Colombo A. Acute stent thrombosis of a bioresorbable vascular scaffold implanted for STsegment elevation myocardial infarction. Int J Cardiol. 2014;174(2):e72-74. DOI: 10.1016/j.ijcard.2014.04.108.
36. Martĭn-Reyes R., Jimĭnez-Valero S., Navarro F., Moreno R. Subacute drug-eluting stent thrombosis caused by stent underexpansion: evaluation by optical coherence tomography. Case Rep Med. 2011;2011:1-3. DOI: 10.1155/2011/129341.
37. Serruys P.W., Ormiston J.A., Onuma Y., Regar E., Gonzalo N., Garcia-Garcia H.M., et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet. 2009;373(9667):897–910. DOI: 10.1016/S0140-6736(09)60325-1.
38. Ishibashi Y., Onuma Y., Muramatsu T., Nakatani S., Iqbal J., Garcia-Garcia H.M., et al. Lessons learned from acute and late scaffold failures in the ABSORB EXTEND trial. EuroIntervention. 2014;1–9. DOI: 10.4244/EIJV10I4A78.
39. Kolandaivelu K., Swaminathan R., Gibson W.J., Kolachalama V.B., Nguyen-Ehrenreich K.L., Giddings V.L., et al. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation.2011;123(13):1400–9. DOI: 10.1161/CIRCULATIONAHA.110.003210.
40. Papafaklis M.I., Bourantas C.V., Farooq V., Diletti R., Muramatsu T., Zhang Y., et al. In vivo assessment of the three-dimensional haemodynamic micro-environment following drug-eluting bioresorbable vascular scaffold implantation in a human coronary artery: Fusion of frequency domain optical coherence tomography and angiography. EuroIntervention. 2013;9(7):890. DOI: 10.4244/EIJV9I7A147.
41. Farooq V., Serruys P.W., Heo J.H., Gogas B.D., Onuma Y., Perkins L.E., et al. Intracoronary optical coherence tomography and histology of overlapping everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: the potential implications for clinical practice. JACC Cardiovasc Interv. 2013;6(5):523-32. DOI: 10.1016/j.jcin.2012.12.131.
42. Rzeszutko L., Depukat R., Dudek D. Biodegradable vascular scaffold ABSORB BVSTM - scientific evidence and methods of implantation. Adv Interv Cardiol. 2013;9(1):22–30. DOI:10.5114/ pwki.2013.34026.
43. Uren N.G., Schwarzacher S.P., Metz J.A., Lee D.P., Honda Y., Yeung A.C., et al. Predictors and outcomes of stent thrombosis: An intravascular ultrasound registry. Eur Heart J. 2002;23(2):124-32. DOI: 10.1053/euhj.2001.2707.
44. Mattesini A., Pighi M., Konstantinidis N., Ghione M., Kilic D., Foin N., et al. Optical coherence tomography in bioabsorbable stents: mechanism of vascular response and guidance of stent implantation. Minerva Cardioangiol. 2014;62(1):71–82. PMID: 24500218.
45. Gomez-Lara J., Diletti R., Brugaletta S., Onuma Y., Farooq V., Thuesen L., et al. Angiographic maximal luminal diameter and appropriate deployment of the everolimus-eluting bioresorbable vascular scaffold as assessed by optical coherence tomography: An ABSORB cohort B trial sub-study. EuroIntervention. 2012;8(2):214–24. DOI: 10.4244/EIJV8I2A35.
46. Nakamura S., Colombo A., Gaglione A., Almagor Y., Goldberg S.L., Maiello L., et.al. Intracoronary ultrasound observations during stent implantation. Circulation. 1994;89(5):2026–34. PMID: 8181126.
47. Ong D.S., Jang I.-K. Causes, assessment, and treatment of stent thrombosis-intravascular imaging insights. Nat Rev Cardiol. 2015;12(6):325-36. DOI: 10.1038/nrcardio.2015.32.
48. Uren N.G., Schwarzacher S.P., Metz J.A., Lee D.P., Honda Y., Yeung A.C., et al. Predictors and outcomes of stent thrombosis: an intravascular ultrasound registry. Eur Heart J. 2002;23(2):124-32. DOI: 10.1053/euhj.2001.2707.
49. Cheneau E., Leborgne L., Mintz G.S., Kotani J., Pichard A.D., Satler L.F., et al. Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study. Circulation. 2003;108(1):43–7. DOI: 10.1161/01.CIR.0000078636.71728.40.
50. Fitzgerald P.J., Oshima A., Hayase M., Metz J.A., Bailey S.R., Baim D.S., et al. Final results of the Can Routine Ultrasound Influence Stent Expansion (CRUISE) study. Circulation. 2000;102(5):523–30. DOI:10.1161/01.CIR.102.5.523Circulation.
51. Casella G., Klauss V., Ottani F., Siebert U., Sangiorgio P., Bracchetti D. Impact of intravascular ultrasound-guided stenting on long-term clinical outcome: a meta-analysis of available studies comparing intravascular ultrasound-guided and angiographically guided stenting. Catheter Cardiovasc Interv. 2003;59(3):314–21. DOI: 10.1002/ccd.10537.
52. Oemrawsingh P.V., Mintz G.S., Schalij M.J., Zwinderman A.H., Jukema J.W., van der Wall E.E. Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenoses: final results of a randomized comparison with angiographic guidance (TULIP Study). Circulation. 2003;107(1):62–7. PMID: 12515744.
53. Costa M.A., Angiolillo D.J., Tannenbaum M., Driesman M., Chu A., Patterson J., et al. Impact of stent deployment procedural factors on long-term effectiveness and safety of sirolimus-eluting stents (final results of the multicenter prospective STLLR trial). Am J Cardiol. 2008;101(12):1704-11. DOI:10.1016/j.amjcard.2008.02.053.
54. Cheneau E., Leborgne L., Mintz G.S., Kotani J., Pichard A.D., Satler L.F., et al. Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study. Circulation. 2003;108(1):43-7. DOI: 10.1161/01.CIR.0000078636.71728.40.
55. de Jaegere P., Mudra H., Figulla H., Almagor Y., Doucet S., Penn I., et al. Intravascular ultrasoundguided optimized stent deployment. Immediate and 6 months clinical and angiographic results from the Multicenter Ultrasound Stenting in Coronaries Study (MUSIC Study). Eur Heart J. 1998;19(8):1214-23. PMID: 9740343.
56. Takarada S., Imanishi T., Liu Y., Ikejima H., Tsujioka H., Kuroi A., et al. Advantage of nextgeneration frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion. Catheter Cardiovasc Interv. 2010;75(2):202–6. DOI: 10.1002/ ccd.22273.
57. Fujino Y., Bezerra H.G., Attizzani G.F., Wang W., Yamamoto H., Chamiĭ D., et al. Frequency-domain optical coherence tomography assessment of unprotected left main coronary artery disease-a comparison with intravascular ultrasound. Catheter Cardiovasc Interv. 2013;82(3):E173-83. DOI: 10.1002/ccd.24843.
58. Fujino Y., Attizzani G.F., Bezerra H.G., Wang W., Tahara S., Yamamoto H., et al. Serial assessment of vessel interactions after drug-eluting stent implantation in unprotected distal left main coronary artery disease using frequency-domain optical coherence tomography. JACC Cardiovasc Interv. 2013;6(10):103545. DOI: 10.1016/j.jcin.2013.05.015.
59. Regar E., Schaar J.A., Mont E., Virmani R., Serruys P.W.. Optical coherence tomography. Cardiovasc Radiat Med. 2003;4(4):198-204. DOI: 10.1161/CIRCULATIONAHA.109.921528.
60. Finn A.V. Illuminating culprit plaque histology by optical coherence tomography: shedding new light on old insights. JACC Cardiovasc Interv. 2015;8(9):117779. DOI: 10.1016/j.jcin.2015.05.002.
61. Gambichler T., Pljakic A., Schmitz L. Recent advances in clinical application of optical coherence tomography of human skin. Clin Cosmet Investig Dermatol. 2015;8:345–54. DOI: 10.2147/CCID.S69119.
62. Gogas B.D., Radu M., Onuma Y., Perkins L., Powers J.C., Gomez-Lara J., et al. Evaluation with in vivo optical coherence tomography and histology of the vascular effects of the everolimus-eluting bioresorbable vascular scaffold at two years following implantation in a healthy porcine coronary artery model: implications of pilot resu. Int J Cardiovasc Imaging. 2012;28(3):499–511. DOI: 10.1007/s10554011-9860-z.
63. Prati F., Di Vito L., Biondi-Zoccai G., Occhipinti M., La Manna A., Tamburino C., et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l’InfartoOptimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention. 2012;8(7):823–9. DOI: 10.4244/EIJV8I7A125.
64. Allahwala U.K., Cockburn J.A., Shaw E., Figtree G.A., Hansen P.S., Bhindi R. Clinical utility of optical coherence tomography (OCT) in the optimisation of Absorb bioresorbable vascular scaffold deployment during percutaneous coronary intervention. EuroIntervention. 2015;10(10):1154-9. DOI: 10.4244/EIJV10I10A190.
65. Asad A.A., Reddy K., Agarwala M.K., Dikshit B., Rath P.C., Purohit B.V., et al. Optical coherence tomography (OCT) guided deployment of ABSORB biovascular scaffolds in percutaneous coronary interventions. Indian Heart J. 2013;65:S89–90. DOI: 10.4244/EIJV10I10A190.
Review
For citations:
Plechev V., Nikolaeva I.N., Buzaev I.V., Zagitov I.G., Rizberg R.Yu., Yamanaeva I.E. BIORESORBABLE VASCULAR SCAFFOLDS (SYSTEMATIC LITERATURE REVIEW). Creative surgery and oncology. 2017;7(4):53-62. (In Russ.) https://doi.org/10.24060/2076-3093-2017-7-4-53-62