Preview

Creative surgery and oncology

Advanced search

Indocyanine Green and Arginine-Glycine-Aspartic Acid Complex Used in Intraoperative Visualization during Resection of Bladder Tumour

https://doi.org/10.24060/2076-3093-2018-8-3-176-184

Abstract

Introduction. Bladder cancer is one of the most common malignancies in humans, causing significant economic and social damage. In the connection, it is proposed to use a highly sensitive bladder cancer detection method, which also detects residual tumours. Additionally, the method can be used to determine the boundaries of the bladder tumour, namely through intraoperative fluorescence molecular imaging. The target agent was synthesised earlier with indocyanine green-arginine-glycine-aspartic acid, which is an integrin avß3-targeted in in vitro and in vivo bladder cancer models.
Materials and methods. The toxicity of indocyanine green-arginine-glycine-aspartic acid (Agac-IG) was measured using the MTT-test. Urothelial carcinoma cell lines were introduced in Female BALB/nu and MB49 mice by means of tumour xenografts via injection in the back of the elbow area. Tumour growth was observed on a daily basis and tested by magnetic resonance imaging until it became suitable for in vivo experiments. Then, all the laboratory animals were divided into 2 groups: ig and AGAk-ig (150 μl, 0.2 mg/ml for all mice). Following this, the tumour was surgically removed. The removed tissue was subjected to a fluorescent microscopy on the basis of infrared-spectrum and histologic studies.
Results. Operations carried out on subcutaneous and orthotopic mouse models under the control of fluorescent imaging using AGAk-IG demonstrate the effectiveness of using a targeted tumour sample to achieve consistent and accurate RMP-resection. Operations under the control of BIC-spectrometry have demonstrated that the proposed substance can effectively help surgeons to locate tumours, determine their edges and constantly check the presence of tumour residues during surgery.
Conclusion. The findings demonstrated the high efficiency of AGAk-IG as a potential molecular fluorescent agent for tumour-specific intraoperative imaging in bladder cancer resection, as well as offering great potential for further clinical studies.

About the Authors

Li Peng
Harbin Medical University.
China

Post-graduate student of the Department of Urology of the Fourth Affiliated Hospital, 157 Baojian Rd, Nangang Qu, Haerbin Shi, Heilongjiang Sheng, 150081, China.



I. R. Kabirov
Bashkir State Medical University.
Russian Federation

Post-graduate student of the Department of Urology of the Fourth Affiliated Hospital; Assistant lecturer of the Department of Urology, 3 Lenin str., Ufa, 450008, Russian Federation.



A. R. Kasinskaya
Bashkir State Medical University.
Russian Federation

Post-graduate student of the Department of Urology, tel.: +7 (905) 353-49-50,  3 Lenin str., Ufa, 450008, Russian Federation.



Jiaqi Wang
Harbin Medical University.
Russian Federation

Physician of the Department of Urology of the Fourth Affiliated Hospital, 157 Baojian Rd, Nangang Qu, Haerbin Shi, Heilongjiang Sheng, 150081, China.



Wanhai Xu
Harbin Medical University.
Russian Federation

Professor, Head of the Department of Urology, Vice-president of the Fourth Affiliated Hospital, 157 Baojian Rd, Nangang Qu, Haerbin Shi, Heilongjiang Sheng, 150081, China.



E. K. Zhuk
Bashkir State Medical University.
Russian Federation

Fourth-year-student of the Faculty of General Medicine, tel.:+7 (917) 359-48-30, 3 Lenin str., Ufa, 450008, Russian Federation. 



R. A. Nuralieva
Bashkir State Medical University.
Russian Federation

Fourth-year-student of the Faculty of General Medicine, 3 Lenin str., Ufa, 450008, Russian Federation. 



References

1. Chen W., Zheng R., Baade P.D., Zhang S., Zeng H., Bray F. et al. Cancer statistics in China, 2015. Ca-cancer J Clin. 2016;66(2):115–32. DOI: 10.3322/caac.21338

2. Voltaggio L., Cimino‐Mathews A., Bishop J.A., Argani P., Cuda J.D., Epstein J.I. et al. Current concepts in the diagnosis and pathobiology of intraepithelial neoplasia: a review by organ system. Ca-cancer J Clin. 2016;66(5):408–36. DOI: 10.3322/caac.21350

3. Babjuk M., Burger M., Zigeuner R., Shariat S.F., van Rhijn B.W., Compérat E. et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2013. Eur Urol. 2008;54(2):303–14. DOI: 10.1016/j.eururo.2013.06.003

4. Pan Y., Volkmer J.P., Mach K.E., Rouse R.V., Liu J.J., Sahoo D. et al. Endoscopic molecular imaging of human bladder cancer using a CD47 antibody. SCI Transl Med. 2014;6(260):e524. DOI: 10.1126/scitranslmed.3009457

5. Witjes J.A., Gomella L.G., Stenzl A., Chang S.S., Zaak D., Grossman H.B. Safety of hexaminolevulinate for blue light cystoscopy in bladder cancer. A combined analysis of the trials used for registration and postmarketing data. Urology. 2014;84(1):122–6. DOI: 10.1016/j.urology.2014.03.006

6. Pavlov V.N., Abdrakhimov R.V., Izmailov A.A., Urmantsev M.F., Kutliyarov L.M., Nasibullin I.M. Fluorescent intraoperative express diagnostics for the choice of lymphadenectomy in radical surgical

7. treatment of muscle-invasive bladder cancer. Bashkortostan Medical Journal. 2016;11(3):31–4. (in Russ.)

8. Inoue K., Anai S., Fujimoto K., Hirao Y., Furuse H., Kai F. et al. Oral 5-aminolevulinic acid mediated photodynamic diagnosis using fluorescence cystoscopy for non-muscle-invasive bladder cancer: a randomized, double-blind, multicentre phase II/III study. Photodiagnosis Photodyn Ther. 2015;12(2):193–200. DOI: 10.1016/j.pdpdt.2015.03.008

9. Baltacı S., Bozlu M., Yıldırım A., Gökçe M.I., Tinay I., Aslan G. et al. Significance of the interval between first and second transurethral resection on recurrence and progression rates in patients with high-risk non-muscleinvasive bladder cancer treated with maintenance intravesical Bacillus Calmette-Guérin. BJU Int. 2015;116(5):721–6. DOI: 10.1111/bju.13102

10. Saccomano M., Dullin C., Alves F., Napp J. Preclinical evaluation of near‐infrared (NIR) fluorescently labeled Cetuximab as a potential tool for fluorescence‐guided surgery. Int J Cancer. 2016;139(10):2277–89. DOI: 10.1002/ijc.30277

11. Vahrmeijer A.L., Hutteman M., Van Der Vorst J.R., Van De Velde C., Frangioni J.V. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10(9):507–18. DOI: 10.1038/nrclinonc.2013.123

12. Garciaallende P.B., Glatz J., Koch M., Tjalma J.J., Hartmans E., Symvoulidis P. et al. Towards clinically translatable NIR fluorescence molecular guidance for colonoscopy. Biomed Opt Express. 2014;5(5):78–92. DOI: 10.1364/BOE.5.000078

13. Wada H., Hyun H., Vargas C., Gravier J., Park G., Gioux S. et al. Pancreas-targeted NIR fluorophores for dual-channel image-guided abdominal surgery. Theranostics. 2015;5(1):1–11. DOI: 10.7150/thno.10259

14. Liang X., Shang W., Chi C., Zeng C., Wang K., Fang C. et al. Dyeconjugated single-walled carbon nanotubes induce photothermal therapy under the guidance of near-infrared imaging. Cancer Lett. 2016;383(2):243–9. DOI: 10.1016/j.canlet.2016.09.006

15. Zeng C., Shang W., Wang K., Chi C., Jia X., Fang C. et al. Intraoperative identification of liver cancer microfoci using a targeted near-infrared fluorescent probe for imaging-guided surgery. Sci Rep. 2016;6:21959. DOI: 10.1038/srep21959

16. Hill T.K., Kelkar S.S., Wojtynek N.E., Souchek J.J., Payne W.M., Stumpf K. et al. Near infrared fluorescent nanoparticles derived from hyaluronic acid improve tumor contrast for image-guided surgery. Theranostics. 2016;6(13):2314–28. DOI: 10.7150/thno.16514

17. Lee J.Y., Thawani J.P., Pierce J., Zeh R., Martinez-Lage M., Chanin M. et al. Intraoperative near-infrared optical imaging can localize gadolinium-enhancing gliomas during surgery. Neurosurgery. 2016;79(6):1. DOI: 10.1227/NEU.0000000000001450

18. Chen H., Niu G., Wu H., Chen X. Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3. Theranostics. 2016;6(1):78–92. DOI: 10.7150/thno.13242

19. Wang Y., Xiao W., Zhang Y., Meza L., Tseng H., Takada Y. et al. Optimization of RGD containing cyclic peptides against αvβ3 integrin. Mol Cancer Ther. 2016;15(2):232–40. DOI: 10.1158/1535-7163.MCT-15-0544

20. Leblanc R., Lee S.C., David M., Bordet J.C., Norman D.D., Patil R. et al. Interaction of platelet-derived autotaxin with tumor integrin αVβ3 controls metastasis of breast cancer cells to bone. Blood. 2014;124(20):3141–50. DOI: 10.1182/blood-2014-04-568683

21. López-Rodríguez V., Galindo-Sarco C., García-Pérez F.O., Ferro-Flores G., Arrieta O., Ávila-Rodríguez M.A. PET-based human dosimetry of the dimeric αvβ3 integrin ligand 68Ga-DOTA-E-[c(RGDfK)]2, a potential tracer for imaging tumor angiogenesis. J Nucl Med. 2015;57(3):404–9. DOI: 10.2967/jnumed.115.161653

22. Oudart J.B., Doué M., Vautrin A., Brassart B., Sellier C., Dupontdeshorgue A. et al. The anti-tumor NC1 domain of collagen XIX inhibits the FAK/PI3K/Akt/mTOR signaling pathway through αvβ3 integrin interaction. Oncotarget. 2015;7(2):1516–28. DOI: 10.18632/oncotarget.6399

23. Ma P., Yu H., Zhang X., Mu H., Chu Y., Ling N. et al. Increased active tumor targeting by an αvβ3-targeting and cell-penetrating bifunctional peptide-mediated dendrimer-based conjugate. Pharm Res. 2016;34(1):1–15. DOI: 10.1007/s11095-016-2045-7

24. Schittenhelm J., Schwab E.I., Sperveslage J., Tatagiba M., Meyermann R., Fend F. et al. Longitudinal expression analysis of αv integrins in human gliomas reveals upregulation of integrin αvβ3 as a negative prognostic factor. J Neuropathol Exp Neurol. 2013;72(3):194–210. DOI: 10.1097/NEN.0b013e3182851019

25. Tucci S., Tucci M., Passarelli A., Silvestris F. Avβ3 integrin: pathogenetic role in osteotropic tumors. Crit Rev Oncol Hematol. 2015;96(1):183–93. DOI: 10.1016/j.critrevonc.2015.05.018

26. Schmieder A.H., Winter P.M., Williams T.A., Allen J.S., Hu G., Zhang H. et al. Molecular MR imaging of neovascular progression in the Vx2 tumor with αvβ3-targeted paramagnetic nanoparticles. Radiology. 2013;268(2):470–80. DOI: 10.1148/radiol.13120789

27. Terry S.Y., Abiraj K., Frielink C., van Dijk L.K., Bussink J., Oyen W.J. et al. Imaging integrin αvβ3 on blood vessels with 111In-RGD2 in head and neck tumor xenografts. J Nucl Med. 2014;55(2):281. DOI: 10.2967/jnumed.113.129668

28. Wenk C.H., Ponce F., Guillermet S., Tenaud C., Boturyn D., Dumy P. et al. Near-infrared optical guided surgery of highly infiltrative fibrosarcomas in cats using an anti-αvß3 integrin molecular probe. Cancer Lett. 2013;334(2):188. DOI: 10.1016/j.canlet.2012.10.041


Review

For citations:


Peng L., Kabirov I.R., Kasinskaya A.R., Wang J., Xu W., Zhuk E.K., Nuralieva R.A. Indocyanine Green and Arginine-Glycine-Aspartic Acid Complex Used in Intraoperative Visualization during Resection of Bladder Tumour. Creative surgery and oncology. 2018;8(3):176-184. (In Russ.) https://doi.org/10.24060/2076-3093-2018-8-3-176-184

Views: 1172


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)