Artificial Intelligence Developments in Medical Visualization and Oncology
https://doi.org/10.24060/2076-3093-2018-8-3-208-215
Abstract
Introduction. The widespread adoption of Artificial Intelligence (AI) technologies forms the core of the so-called Industrial Revolution 4.0.
The aim of this study is to examine qualitative changes occurring over the last two years in the development of AI through an examination of trends in PubMed publications.
Materials. All abstracts with keyword “artificial intelligence” were downloaded from PubMed database https://www.ncbi.nlm.nih.gov/pubmed/ in the form of .txt files. In order to produce a generalisation of topics, we classified present applications of AI in medicine. To this end, 78,420 abstracts, 5558 reviews, 304 randomised controlled trials, 247 multicentre studies and 4137 other publication types were extracted. (Figure 1). Next, the typical applications were classified.
Results. Interest in the topic of AI in publications indexed in the PubMed library is increasing according to general innovation development principles. Along with English publications, the number of non-English publications continued to increase until 2018, represented especially by Chinese, German and French languages. By 2018, the number of non-English publications had started to decrease in favour of English publications. Implementations of AI are already being adopted in contemporary practice. Thus, AI tools have moved out of the theoretical realm to find mainstream application.
Conclusions. Tools for machine learning have become widely available to working scientists over the last two years. Since this includes FDA-approved tools for general clinical practice, the change not only affects to researchers but also clinical practitioners. Medical imaging and analysis applications already approved for the most part demonstrate comparable accuracy with the human specialist. A classification of developed AI applications is presented in the article.
About the Authors
I. V. BuzaevRussian Federation
Candidate of Medical Sciences, Head of the Department of Interventional Cardiology, Assistant lecturer of the Department of Hospital Surgery, 96 S. Kuvykin str., 450106, Russian Federation.
V. V. Plechev
Russian Federation
Doctor of Medical Sciences, Professor, Head of the Department of Hospital Surgery, Lenin str., Ufa, 450008, Russian Federation.
R. M. Galimova
Russian Federation
Assistant lecturer of the Department of Neurology, 3 Lenin str., Ufa, 450008, Russian Federation.
A. R. Kireev
Russian Federation
Applicant of the Department of Management and Marketing, 12 K. Marx str., Ufa, 450008, Russian Federation.
L. K. Yuldybaev
Russian Federation
Candidate of Technical Sciences, Associate professor of the Department of
Mathematics, 1 Kosmonavtov str., Ufa, 450062, Russian Federation.
A. F. Shaykhulova
Russian Federation
Candidate of Technical Sciences, Assistant lecturer of the Department of Mechanical Design Technology, 12 K. Marx str., Ufa, 450008, Russian Federation.
S. G. Akhmerova
Russian Federation
Doctor of Medical Sciences, Professor of the Department of Public Health and Health Organization in the Institute of Additional Professional Education, 3 Lenin str., Ufa, 450008, Russian Federation.
References
1. Ozhegov N.I. Shvedova N.Yu. Explanatory Dictionary of the Russian Language. 4th ed. Moscow, 1997–1999. (in Russ.)
2. Stevenson A. (ed.) Oxford Dictionary of English. Oxford University Press, 2010.
3. Kruger J., Dunning D. Unskilled and unaware of it: how difficulties in recognizing one’s own incompetence lead to inflated self-assessments. J Pers Soc Psychol. 1999;77(6):1121–34. PMID: 10626367
4. Tversky A., Kahneman D. Judgement under uncertainty: Heuristics and biases. Sciences. 1974;185(4157):1124–31. DOI: 10.1126/science. 185.4157.1124
5. Kosfeld M., Heinrichs M., Zak P.J., Fischbacher U., Fehr E. Oxytocin increases trust in humans. Nature. 2005;435(7042):673–6. DOI: 10.1038/nature03701
6. Clarke A.M., Friedrich J., Senn W., Tartaglia E.M., Marchesotti S., Herzog M.H. Human learning in non-Markovian decision making. Available from: http://www.stat.columbia.edu/~johannes/docs/rldm2013.pdf
7. Clarke A.M., Friedrich J., Tartaglia E.M., Marchesotti S., Senn W., Herzog M.H. Human and machine learning in non-markovian decision making. PLoS One. 2015;10(4):e0123105. DOI: 10.1371/journal.pone.0123105
8. Kotler P., Keller K.L. Marketing Management. 15-th ed. Edinburgh: Pearson Education Limited, 2016.
9. Jiang F., Jiang Y., Zhi H., Dong Y., Li H., Ma S. et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–43. DOI: 10.1136/svn-2017-000101
10. Goodfellow I., Bengio Y., Courville A. Deep Learning. MIT Press, 2016.
11. Chollet F., Allaire J.J. (eds) Deep Learning with R. Manning Publications, 2017.
12. Selivanov S.G., Guzairov M.B., Kutin A.A. Innovatics. The university textbook. Moscow: Machinostroyeniye, 2007. (in Russ.)
13. Poole D., Mackworth A., Goebel R. Computational Intelligence: a logical approach. New York: Oxford University Press, 1998.
14. Duque A., Stevenson M., Martinez-Romo J., Araujo L. Co-occurrence graphs for word sense disambiguation in the biomedical domain. Artif Intell Med. 2018;87:9–19. DOI: 10.1016/j.artmed.2018.03.002
15. Tsopra R., Lamy J.-B., Sedki K. Using preference learning for detecting inconsistencies in clinical practice guidelines: Methods and application to antibiotherapy. Artif Intell Med. 2018;89:24–33. DOI: 10.1016/j.artmed.2018.04.013
16. Yazdanparast R., Abdolhossein Zadeh S., Dadras D., Azadeh A. An intelligent algorithm for identification of optimum mix of demographic features for trust in medical centers in Iran. Artif Intell Med. 2018;88:25–36. DOI:10.1016/j.artmed.2018.04.006
17. De Rossi D., Domenici C., Chiarelli P. Analogs of biological tissues for mechanoelectrical transduction: tactile sensors and muscle-like actuators. In: Sensors and sensory systems for advanced robots. Springer, 1988. P. 201–18.
18. Giorgino T., Quaglini S., Lorassi F., De Rossi D. Experiments in the detection of upper limb posture through kinestetic strain sensors. In: International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06). Cambridge, MA, 2006. P. 4–12. DOI: 10.1109/BSN.2006.25
19. Riul A., dos Santos D.S., Wohnrath K., Di Tommazo R., Carvalho A.C.P.L.F., Fonseca F.J. et al. Artificial taste sensor: efficient combination of sensors made from Langmuir — Blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer. Langmuir. 2002;18(1):239–45. DOI: 10.1021/la011017d
20. Liang F., Qian P., Su K.H., Baydoun A., Leisser A., Van Hedent S. et al. Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: An intelligent, multi-level fusion approach. Artif Intell Med. 2018;90:34–41. DOI: 10.1016/j.artmed.2018.07.001
21. Piórkowski A. A statistical dominance algorithm for edge detection and segmentation of medical images. In: Piętka E., Badura P., Kawa J., Wieclawek W. (eds) Information Technologies in Medicine. Springer;2016:3–14.
22. Gandomkar Z., Brennan P.C., Mello-Thoms C. MuDeRN: Multicategory classification of breast histopathological image using deep residual networks. Artif Intell Med. 2018;88:14–24. DOI:10.1016/j.artmed.2018.04.005
23. Bardou D., Zhang K., Ahmad S.M. Lung sounds classification using convolutional neural networks. Artif Intell Med. 2018;88:58–69. DOI: 10.1016/j.artmed.2018.04.008
24. Sundgren H., Winquist F., Lukkari I., Lundstrom I. Artificial neural networks and gas sensor arrays: quantification of individual components in a gas mixture. Measur Sci Technol. 1991;2(5):464. DOI: 10.1088/0957-0233/2/5/008
25. Gardner J.W., Shin H.W., Hines E.L. An electronic nose system to diagnose illness. Sensors Actuators B: Chemical. 2000;70(1):19–24. DOI: 10.1016/S0925-4005(00)00548-7
26. Di Francesco F., Fuoco R., Trivella M.G., Ceccarini A. Breath analysis: trends in techniques and clinical applications. Microchem J. 2005;79(1):405–10. DOI: 10.1016/j.microc.2004.10.008
27. Kopylov Ph.Yu., Syrkin A.L., Chomakhidze P.Sh., Bykova A.A., Shhekochihin D. Yu., Shaltaeva Yu.R. et al. Proton transfer reaction mass spectrometry of exhaled breath in diagnostics of heart failure. Kardiologiia. 2016;56(5):37–41. (in Russ.). DOI: 10.18565/cardio.2016.5.37-41
28. AlAgha A.S., Faris H., Hammo B.H., Al-Zoubi A.M. Identifying β-thalassemia carriers using a data mining approach: The case of the Gaza Strip, Palestine. Artif Intell Med. 2018;88:70–83. DOI: 10.1016/j.artmed.2018.04.009
29. Richter A.N., Khoshgoftaar T.M. A review of statistical and machine learning methods for modeling cancer risk using structured clinical data. Artif Intell Med. 2018;90:1–14. DOI: 10.1016/j.artmed.2018.06.002
30. Askari E., Setarehdan S.K., Ali Sheikhani, Mohammadi M.R., Teshnehlab M. Modeling the connections of brain regions in children with autism using cellular neural networks and electroencephalography analysis. Artif Intell Med. 2018;89:40–50. DOI: 10.1016/j.artmed.2018.05.003
31. He B., Guan Y., Dai R. Classifying medical relations in clinical text via convolutional neural networks. Artif Intell Med. 2018 May 18 [in Press]. DOI: 10.1016/j.artmed.2018.05.001
32. Epure E.V., Compagno D., Salinesi C., Deneckere R., Bajec M., Žitnik S. Process models of interrelated speech intentions from online healthrelated conversations. Artif Intell Med. 2018 July 18 [in Press]. DOI: 10.1016/j.artmed.2018.06.007
33. Denecke K., van Harmelen F. Recent advances in extracting and processing rich semantics from medical texts. Artif Intell Med. 2018 Aug 3. pii: S0933-3657(18)30441-X. DOI: 10.1016/j.artmed.2018.07.004
34. Koopman B., Zuccon G., Nguyen A., Bergheim A., Grayson N. Extracting cancer mortality statistics from death certificates: A hybrid machine learning and rule-based approach for common and rare cancers. Artif Intell Med. 2018;89:1–9. DOI: 10.1016/j.artmed.2018.04.011
35. Gerevini A.E., Lavelli A., Maffi A., Maroldi R., Minard A.-L., Serina I. et al. Automatic classification of radiological reports for clinical care. Artif Intell Med. 2018. June 7 [in Press]. DOI: 10.1016/j.artmed.2018.05.006
36. García M.A.M., Rodríguez R.P., Rifón L.A. Leveraging Wikipedia knowledge to classify multilingual biomedical documents. Artif Intell Med. 2018;88:37–57. DOI: 10.1016/j.artmed.2018.04.007
37. da Costa C.A., Pasluosta C.F., Eskofier B., da Silva D.B., da Rosa Righi R. Internet of Health Things: toward intelligent vital signs monitoring in hospital wards. Artif Intell Med. 2018;89:61–9. DOI: 10.1016/j.artmed.2018.05.005
38. Hela S., Amel B., Badran R. Early anomaly detection in smart home: A causal association rule-based approach. Artif Intell Med. 2018 June 29 [in Press]. DOI: 10.1016/j.artmed.2018.06.001
39. Akbar Sh., Akram M.U., Sharif M., Tari A., Khan Sh.A. Decision support system for detection of hypertensive retinopathy using arteriovenous ratio. Artif Intell Med. 2018;90:15–24. DOI: 10.1016/j.artmed.2018.06.004
40. Buzaev I.V., Plechev V.V., Nikolaeva I.E., Galimova R.M. Artificial intelligence: Neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes. Chronic Dis Transl Med. 2016;2(3):166–72. DOI: 10.1016/j.cdtm.2016.09.007
41. Jun Guo, Xuan Yuan, Xia Zheng, Pengfei Xu, Yun Xiao, Baoying Liu. Diagnosis labeling with disease-specific characteristics mining. Artif Intell Med. 2018;90:25–33. DOI: 10.1016/j.artmed.2018.06.006
42. Luo M., Zhao R. A distance measure between intuitionistic fuzzy sets and its application in medical diagnosis. Artif Intell Med. 2018;89:34–9. DOI: 10.1016/j.artmed.2018.05.002
43. Yamada Y., Kobayashi M. Detecting mental fatigue from eye-tracking data gathered while watching video: evaluation in younger and older adults. Artif Intell Med. 2018. DOI: 10.1016/j.artmed.2018.06.005
44. Valmarska A., Miljkovic D., Konitsiotis S., Gatsios D., Lavrač N., RobnikŠikonja M. Symptoms and medications change patterns for Parkinson’s disease patients stratification. Artif Intell Med. 2018 May 23. pii: S0933-3657(17)30587-0. DOI: 10.1016/j.artmed.2018.04.010
45. Mendez J.A., Leon A., Marrero A., Gonzalez-Cava J.M., Reboso J.A., Estevez J.I. et al. Improving the anesthetic process by a fuzzy rule based medical decision system. Artif Intell Med. 2018;84:159–70. DOI: 10.1016/j.artmed.2017.12.005
46. AI Is Here — Are You Ready? Chinafrica. 2018;10:24.
47. Capodanno D., Di Salvo M.E., Cincotta G., Miano M., Tamburino C., Tamburino C. Usefulness of the SYNTAX score for predicting clinical outcome after percutaneous coronary intervention of unprotected left main coronary artery disease. Circ Cardiovasc Interv. 2009;2(4):302–8. DOI: 10.1161/CIRCINTERVENTIONS.108.847137
48. FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems [Internet]. April 11, 2018. Available from: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm604357.htm
49. FDA permits marketing of clinical decision support software for alerting providers of a potential stroke in patients [Internet]. February 13, 2018. Available from: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm596575.htm
50. FDA permits marketing of artificial intelligence algorithm for aiding providers in detecting wrist fractures [Internet]. May 24, 2018. Available from: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm608833.htm
51. Pavlov V.N., Bilyalov A.R., Gilmanova R.F., Yakupov R.R., Kovtunenko A.S., Bikmeev A.T. et al. The use of intelligent data processing techniques of raman spectroscopy for the diagnosis of malignant tumors. Bashkortostan Medical Journal. 2018;13(3):43–7. (in Russ.)
52. Third Opinion — Medical Image Recognition Platform. [cited 26.10.2018]. Available from: https://3opinion.ru/ru
Review
For citations:
Buzaev I.V., Plechev V.V., Galimova R.M., Kireev A.R., Yuldybaev L.K., Shaykhulova A.F., Akhmerova S.G. Artificial Intelligence Developments in Medical Visualization and Oncology. Creative surgery and oncology. 2018;8(3):208-215. (In Russ.) https://doi.org/10.24060/2076-3093-2018-8-3-208-215