Preview

Creative surgery and oncology

Advanced search

Novel Aspects of Cardiac Ischemia and Reperfusion Injury Mechanisms

https://doi.org/10.24060/2076-3093-2018-8-3-216-224

Abstract

Introduction. The present article, in which a contemporary analysis of the literature on the pathophysiology of ischemic and reperfusion injury (IRI) of the myocardium is presented, focuses on the possible role played by of the calpain system and oxidative stress. Several process development options were proposed, including cytosolic and mitochondrial Ca2+ overload, reactive oxygen stress release, acute inflammatory response and metabolic degradation. The combined effect of all of the above factors produces irreversible ischemic and reperfused damage of cardiomyocytes.
Materials and methods. The role of the calpain system in the creation of myocardial IRI was experimentally investigated. It was found that active calpain substrates play a significant role in the processes of cell cycle, apoptosis and differentiation, adversely affecting cardiomyocyte functionality. The calpain system is part of an integrated proteolytic system that is critical to the relationship between the structure and function of the cardiac sarcomere. Uncontrolled activation of calpain is indicated in the pathophysiology of many cardiovascular disorders. As shown by research, inhibitor calpain reduces the size of the zone of infarction following ischemia reperfusion and thus lessens the risk of “stunning” the myocardium. As is known, a consequence of IRI is acute myocardial infarction (AMI), which is a central factor in cardiovascular disease (CVD) and is one of the primary causes of mortality. Understanding the exact pathophysiological mechanisms remains an urgent problem for clinical physicians. To date, the mechanisms of IRI are not fully known, which creates certain difficulties in further treatment and prevention tactics. In addition, myocardial IRI is also an important issue for pathoanatomical service, since sudden coronary death can occur despite timely reperfusion therapy following AMI.
Conclusion. The development of strategies for creating conditions that limit the degree of damage to myocardial tissues significantly increases the ability of the heart to withstand ischemic damage.

About the Authors

T. A. Yagudin
Bashkir State Medical University.
Russian Federation

Post-graduate student of the Department of Hospital Surgery, tel.: +7 (927) 334-49-50, 3 Lenin str., Ufa, 450008, Russian Federation.



A. t Shabanova
Bashkir State Medical University.
Russian Federation

Post-graduate student of the Pediatric Outpatient and Emergency Department with the Course of Additional Professional Education, 3 Lenin str., Ufa, 450008, Russian Federation.



Hong-Yu Liu
Harbin Medical University.
Russian Federation

MD, Ph.D, Department of Cardiovascular Surgery of the First Affiliated Hospital, 23 Youzheng str., Haerbin Shi, Heilongjiang Sheng, 150081, China.



References

1. Bulion V.V., Krylova IB, Selina E.N. Cardioprotection in case of ischemic myocardial damage. Reviews of clinical pharmacology and drug therapy. 2018;16(2):13–17. (in Russ.). DOI: 10.17816/RCF16213-17

2. Shemarova I.V., Nesterov V.P., Korotkov S.M., Sobol K.V. Participation of Ca2+ in the development of ischemic pages of the myocardial contractile

3. function. Journal of Evolutionary Biochemistry and Physiology. 2017:53(5):328–37. (in Russ.)

4. Mandel I.A., Podoksenov A.Yu., Sukhodolo I.V., Podoksenov Yu.K., Svirko Yu.S., Kamenshchikov N.O. et al. Protecting the myocardium from ischemic and reperfusion injuries (experimental study). Bulletin of experimental biology and medicine. 2017;164(7):29–33. (in Russ.)

5. Naryzhnaya N.V., Maslov L.N. Ways of cardiac myocyte cell death during ischemia and reperfusion of the heart. Russian physiological journal them. THEM. Sechenov. 2017;103(4):371–80. (in Russ.)

6. Gorelikov A.V. Ischemic postconditioning in the prevention of reperfusion myocardial damage in patients with oim and elevation of the street segment. Cardiology in Belarus. 2017;(1):60–78. (in Russ.)

7. Lukyanova M.E., ErmolaYu.A. Modern ideas about the role of apoptosis in the death of cardiomyocytes in ischemic heart disease. Scientific Methodical Electronic Journal Concept. 2017;(42):179–84. (in Russ.)

8. Konstantinova E.V., Shostak N.A., Gilyarov M.Yu. Modern possibilities of reperfusion therapy of myocardial infarction and ischemic stroke. Clinician.

9. ;(1):4–12. (in Russ.). DOI: 10.17650/1818-8338-2015-1-4-12

10. Grebenchikov O.A, Likhvantsev V.V., Plotnikov E.Yu., Silachev D.N., Pevzner I.B., Zorova L.D. et al. Molecular mechanisms of development and targeted therapy of ischemia-reperfusion syndrome. Anesthesiology and Resuscitation. 2014;(3):59–67. (in Russ.)

11. Karpenko M.N., Tikhomirova M.S. The role of calpains in the regulation of synaptic transmission. Russian Physiological Journal THEM. THEM. Sechenov. 2014;100(4):385–93. (in Russ.)

12. Kalyuzhin V.V., Teplyakov A.T., Bespalova I.D., Kalyuzhina E.V. On the issue of myocardial ischemic dysfunction. Bulletin of Siberian medicine. 2014;13(6):57–71. (in Russ.)

13. D’amico R., Fusco R., Gugliandolo E., Cordaro M., Siracusa R., Impellizzeri D. et al. Effects of a new compound containing Palmitoylethanolamide and Baicalein in myocardial ischaemia/reperfusion injury in vivo. Phytomedicine. 2019;54:27–42. DOI: 10.1016/j.phymed.2018.09.191

14. De Jong R.C.M., Pluijmert N.J., De Vries M.R., Pettersson K., Atsma D.E., Jukema J.W. et al. Annexin A5 reduces infarct size and improves cardiac function after myocardial ischemia-reperfusion injury by suppression of the cardiac inflammatory response. Scientific Reports. 2018;(6753). DOI: 10.1038/s41598-018-25143-y

15. Tao A., Xu X., Kvietys P., Kao R., Martin C., Rui T. Experimental diabetes mellitus exacerbates ischemia/reperfusion-induced myocardial injury by promoting mitochondrial fission: Role of down-regulation of myocardial Sirt1 and subsequent Akt/Drp1 interaction. Int J Biochem Cell Biol. 2018;105:94–103. DOI: 10.1016/j.biocel.2018.10.011

16. Yang G.-Z., Xue F.-S., Liu Y.-Y., Li H.-X., Liu Q., Liao X. Feasibility analysis of oxygen-glucose deprivation-nutrition resumption on H9c2 cells in vitro models of myocardial ischemia-reperfusion injury. Chin Med J (Engl). 2018;131(19):2277–86. DOI: 10.4103/0366-6999.241809

17. Wang S., Liu C., Gong C., Li T., Zhao J., Xiao W. et al. Alpha linolenic acid intake alleviates myocardial ischemia/reperfusion injury via the P2X7R/NF-κB signalling pathway. J Function Foods. 2018;49:1–11. DOI: 10.1016/j.jff.2018.08.012

18. Zhang S.-B., Liu T.-J., Pu G.-H., Li B.-Y., Gao X.-Z., Han X.-L. Suppression of long non-coding RNA LINC00652 restores sevoflurane-induced cardioprotection against myocardial ischemia-reperfusion injury by targeting GLP-1R through the cAMP/PKA pathway in mice. Cell Physiol Biochem. 2018;49:1476–91. DOI: 10.1159/000493450

19. Huang Y.-Y., Wu J.-M., Su T., Zhang S.-Y., Lin X.-J. Fasudil, a rhokinase inhibitor, exerts cardioprotective function in animal models of myocardial ischemia/reperfusion injury: A meta-analysis and review of preclinical evidence and possible mechanisms. Front Pharmacol. 2018;9:1083. DOI: 10.3389/fphar.2018.01083

20. Zhang Y., Qian P., Zhou H., Shen R., Hu B., Shen Y. et al. Pharmacological signatures of the exenatide nanoparticles complex against myocardial ischemia reperfusion injury. Kidney Blood Press Res. 2018;43(4):1273–84. DOI: 10.1159/000492409

21. Huang X., Wang Y., Wang Y., Yang L., Wang J., Gao Y. Ophiopogonin D reduces myocardial ischemia-reperfusion injury via upregulating CYP2J3/EETs in rats. Cell Physiol Biochem. 2018;49(4):1646–58. DOI: 10.1159/000493500

22. Yang C.-F. Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury. Tzu Chi Med J. 2018;30(4):209–15. DOI: 10.4103/tcmj.tcmj_33_18

23. Cao F., Zervou S., Lygate C.A. The creatine kinase system as a therapeutic target for myocardial ischaemia-reperfusion injury. Biochem Soc Trans. 2018;46(5):1119–27. DOI: 10.1042/BST20170504

24. Zhang Y., Cao C., Xin J., Lv P., Chen D., Li S. et al. Treatment with placental growth factor attenuates myocardial ischemia/reperfusion injury. PLoS One. 2018;13(9):e0202772. DOI: 10.1371/journal.pone.0202772

25. Li Q., Fan Z.-X., Yang Y., Yang J. Ethyl pyruvate: A promising feasible therapeutic approach for myocardial ischemia-reperfusion injury under both normoglycemia and hyperglycemia. Int J Cardiol. 2018;265:38. DOI: 10.1016/j.ijcard.2018.02.089

26. Yan X., Xun M., Wu L., Du X., Zhang F., Zheng J. DRm217 attenuates myocardial ischemia-reperfusion injury via stabilizing plasma membrane Na+-K+-ATPase, inhibiting Na+-K+-ATPase/ROS pathway and activating PI3K/Akt and ERK1/2. Toxicol Appl Pharmacol. 2018;349:62–71. DOI: 10.1016/j.taap.2018.04.030

27. Geldi O., Kubat E., Ünal C.S., Canbaz S. Acetaminophen mitigates myocardial injury induced by lower extremity ischemia-reperfusion in rat model. Braz J Cardiovasc Surg. 2018;33(3):258–64. DOI: 10.21470/1678-9741-2017-0218

28. Jeddi S., Ghasemi A., Asgari A., Nezami-Asl A. Role of inducible nitric oxide synthase in myocardial ischemia-reperfusion injury in sleep-deprived rats. Sleep Breath. 2018;22(2):353–9. DOI: 10.1007/s11325-017-1573-7

29. Fu H., Li X., Tan J. NIPAAm-MMA nanoparticle-encapsulated visnagin ameliorates myocardial ischemia/reperfusion injury through the promotion of autophagy and the inhibition of apoptosis. Oncol Lett. 2018;15(4):4827–36. DOI: 10.3892/ol.2018.7922

30. Abad C., Castano-Ruiz M., Clavo B., Urso S. Myocardial-reperfusion injury in cardiac surgery with cardiopulmonary bypass. Biochemical aspects. Cirugia Cardiovascular. 2018;25(2):112–7. DOI: 10.1016/j.circv.2017.09.007

31. Yin B., Hou X.-W., Lu M.-L. Astragaloside IV attenuates myocardial ischemia/reperfusion injury in rats via inhibition of calcium-sensing receptor-mediated apoptotic signaling pathways. ActaPharmacol Sin. 2018 Jul 20 [in Press]. DOI: 10.1038/s41401-018-0082-y

32. Luan Y., Sun C., Wang J., Jiang W., Xin Q., Zhang Z. et al. Baicalin attenuates myocardial ischemia-reperfusion injury through Akt/NF-κB pathway. J Cell Biochem. 2018 Sep 22 [in Press]. DOI: 10.1002/jcb.27587

33. Li D., Ni H., Rui Q., Gao R., Chen G. Mst1: Function and mechanism in brain and myocardial ischemia reperfusion injury. Curr Neuropharmacol. 2018;16(9):1358–64. DOI: 10.2174/1570159X16666180516095949

34. Dong J., Zhao Y., He X.-K. Down-regulation of miR-192 protects against rat ischemia-reperfusion injury after myocardial infarction. Eur Rev Med Pharmacol Sci. 2018;22(18):6109–18. DOI: 10.26355/eurrev_201809_15950

35. Gunes I., Kartal H., Dursun A.D., Sungu N., Polat Y., Erkent F.D. et al. Effects of apelin-13 on myocardial ischemia reperfusion injury in streptozotocine induced diabetic rats. Bratisl Lek Listy. 2018;119(6):348–54. DOI: 10.4149/BLL_2018_065

36. Ghardashi Afousi A., Gaeini A., Rakhshan K., Naderi N., Darbandi Azar A., Aboutaleb N. Targeting necroptotic cell death pathway by high-intensity interval training (HIIT) decreases development of postischemic adverse remodelling after myocardial ischemia / reperfusion injury. J Cell Commun Signal. 2018 Aug 2 [in Press]. DOI: 10.1007/s12079-018-0481-3

37. Wu J., Xun N., Yang Y., Zeng L., Li Z., Yang W. et al. Chrysin attenuates myocardial ischemia-reperfusion injury by inhibiting myocardial inflammation. RSC Advances. 2018;8(25):13739–46. DOI: 10.1039/c8ra00590g

38. Jin B., Jiang R., Guo Y., Huang Y., Chen N., Qian C. et al. Protective effect of the total flavonoids from Caryacathayensis leaves on myocardial ischemia-reperfusion injury through anti-oxidative and anti-apoptotic activities. Int J Agric Biol. 2018;20(10):2293–300. DOI: 10.17957/IJAB/15.0780

39. Yu L., Zhang W., Huang C., Liang Q., Bao H., Gong Z. et al. FoxO4 promotes myocardial ischemia-reperfusion injury: The role of oxidative stress-induced apoptosis. Am J Transl Res. 2018;10(9):2890–900. PMID: 30323875

40. Fu W., Xu H., Yu X., Lyu C., Tian Y., Guo M. et al. 20(S)-Ginsenoside Rg2 attenuates myocardial ischemia/reperfusion injury by reducing oxidative stress and inflammation: Role of SIRT1. RSC Advances. 2018;8(42):23947–62. DOI: 10.1039/c8ra02316f

41. Han X., Zhongbao R., Xiaofeng C., Xuehua P., Jilu Y. Implication of serum microRNA-7a/B with myocardial cell injury induced by ischemia reperfusion. Biomed Res. 2018;29(10):1974–8. DOI: 10.4066/biomedicalresearch.29-17-2915

42. Koçyigit A., Gulmen Ş., Kurtoglu T., Doguç D.K., Meteoglu I., Okutan H. et al. The effect of ozone treatment on remote organ myocardial injury in an aortic ischemia-reperfusion model. Turk J Thorac Cardiovasc Surg. 2018;26(2):207–13. DOI: 10.5606/tgkdc.dergisi.2018.15484

43. Qiu Z., Chen X., Yin L., Chen W., Xu Y., Jiang B. Stomatin-like protein-2 relieve myocardial ischemia/reperfusion injury by adenosine 5'-monophosphate-activated protein kinase signal pathway. J Cell Biochem. 2018 Oct 10 [in Press]. DOI: 10.1002/jcb.27561

44. Tonet E., Bernucci D., Morciano G., Campo G. Pharmacological protection of reperfusion injury in ST-segment elevation myocardial infarction. Gone with the wind. Postepy Kardiol Interwencyjnej. 2018;14(1):5–8. DOI: 10.5114/aic.2018.74349

45. Al-Salam S., Hashmi S. Myocardial ischemia reperfusion injury: apoptotic, inflammatory and oxidative stress role of galectin-3. Cell Physiol Biochem. 2018;50(3):1123–39. DOI: 10.1159/000494539

46. Zhou L.-Y., Zhai M., Huang Y., Xu S., An T., Wang Y.-H. et al. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway. Cell Death Different. 2018 Oct 22 [in Press]. DOI: 10.1038/s41418-018-0206-4

47. Zhang L., Jian L.L., Li J.Y., Jin X., Li L.Z., Zhang Y.L. et al. Possible involvement of alpha B-crystallin in the cardioprotective effect of n-butanol extract of Potentillaanserina L. on myocardial ischemia/ reperfusion injury in rat. Phytomedicine. 2018 Oct 19 [in Press]. DOI: 10.1016/j.phymed.2018.10.024

48. Gong Z., Wen M., Cheng X. Research progress on the role of exosomes in myocardial ischemia/reperfusion injury. Chin J Cardiol. 2017;45(12):1112–4. DOI: 10.3760/cma.j.issn.0253-3758.2017.12.021

49. Sun X., Wang W., Dai J., Jin S., Huang J., Guo C. et al. A long-term and slow-releasing hydrogen sulfide donor protects against myocardial ischemia/reperfusion injury. Sci Rep. 2017;14;7(1):3541. DOI: 10.1038/s41598-017-03941-0

50. Binek A., Fernández-Jiménez R., Jorge I., Camafeita E., López J.A., Bagwan N. et al. Proteomic footprint of myocardial ischemia/reperfusion injury: Longitudinal study of the at-risk and remote regions in the pig model. Sci Rep. 2017;7(1):12343. DOI: 10.1038/s41598-017-11985-5

51. DÍaz I., Calderón-Sánchez E., Toro R.D., Ávila-Médina J., De Rojas-De Pedro E.S., Domínguez-Rodríguez A. et al. MIR-125a, MIR-139 and MIR-324 contribute to Urocortin protection against myocardial ischemia-reperfusion injury. Sci Rep. 2017;7(1):8898. DOI: 10.1038/s41598-017-09198-x

52. Vincent A., Covinhes A., Barrère C., Gallot L., Thoumala S., Piot C. et al. Acute and long-term cardioprotective effects of the Traditional Chinese Medicine MLC901 against myocardial ischemia-reperfusion injury in mice. Sci Rep. 2017;7(1):14701. DOI: 10.1038/s41598-017-14822-x

53. Yu S.-Y., Dong B., Zhou S.-H., Tang L. LncRNA UCA1 modulates cardiomyocyte apoptosis by targeting miR-143 in myocardial ischemia-reperfusion injury. Int J Cardiol. 2017;247:31. DOI: 10.1016/j.ijcard.2017.05.055

54. Zhu J.-X., Kong L.-H., Zhang C.-F., Sun N., Chang J.-R., Xu Y. Capsaicin alleviate myocardial ischemia reperfusion injury through attenuating mitochondrial oxidative stress. J Sichuan Univer. 2017;48(5):716–20. PMID: 29130663

55. Dong B., Zhou S., Yu S., Tang L. NOD-like receptor pyrin domain containing 3 inflammasome and myocardial ischemia-reperfusion injury. J Central South Univer (Med Sci). 2017;42(7):848–53. DOI: 10.11817/j.issn.1672-7347.2017.07.018

56. He Y., Zhang B., Chen Y., Jin Q., Wu J., Yan F. et al. Image-guided hydrogen gas delivery for protection from myocardial ischemiareperfusion injury via microbubbles. ACS Appl Mater Interfaces. 2017;9(25):21190–9. DOI: 10.1021/acsami.7b05346

57. Lee Y.J., Lee D., Shin S.M., Lee J.S., Chun H.S., Quan F.-S. et al. Potential protective effects of fermented garlic extract on myocardial ischemia-reperfusion injury utilizing in vitro and ex vivo models. J Function Foods. 2017;33:278–85. DOI: 10.1016/j.jff.2017.03.058

58. Cui Y.-C., Pan C.-S., Yan L., Li L., Hu B.-H., Chang X. et al. Ginsenoside Rb1 protects against ischemia/reperfusion-induced myocardial injury via energy metabolism regulation mediated by RhoA signaling pathway. Sci Rep. 2017;7:44579. DOI: 10.1038/srep44579

59. Zheng X.-H., Liu C.-P., Hao Z.-G., Wang Y.-F., Li X.-L. Protective effect and mechanistic evaluation of linalool against acute myocardial ischemia and reperfusion injury in rats. RSC Advances. 2017;7(55):34473–81. DOI: 10.1039/c7ra00743d

60. Hadi N.R., Al-Amran F.G., Abbas M.K., Ali Hussein Y., Al-Yasiri I.K., Kartikey K. The cardioprotective potential of bosentan in myocardial ischemia reperfusion injury. World Heart J. 2017;9(2):155–63.

61. Zhao X., Zhang F., Wang Y. Proteomic analysis reveals Xuesaitong injection attenuates myocardial ischemia/reperfusion injury by elevating pyruvate dehydrogenase-mediated aerobic metabolism. Molecular Bio Systems. 2017;13(8):1504–11. DOI: 10.1039/c7mb00140a


Review

For citations:


Yagudin T.A., Shabanova A.t., Liu H. Novel Aspects of Cardiac Ischemia and Reperfusion Injury Mechanisms. Creative surgery and oncology. 2018;8(3):216-224. (In Russ.) https://doi.org/10.24060/2076-3093-2018-8-3-216-224

Views: 1662


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)