Preview

Creative surgery and oncology

Advanced search

Nanoparticles: a New Approach to the Diagnosis and Treatment of Cerebral Glial Tumours

https://doi.org/10.24060/2076-3093-2019-9-1-66-74

Abstract

Glial tumors, and in particular anaplastic astrocytomas and glioblastoma multiforme (GBM), are aggressive brain tumors with poor prognosis and high recurrence rates. Current treatment strategies are based on open surgery, chemotherapy and radiation therapy. However, not a single one of these methods of treatment, alone or in combination, is effective in combating this disease, resulting in the average life expectancy following the diagnosis of under 15 months. Treatments are inefficient mainly due to the blood-brain barrier (BBB) that makes the delivery of drugs into the tumor mass difficult. With the development of nanotechnology the effectiveness of the drugs currently in use is on an increase and the reach to glial brain tumors is expanding. Nanoparticles are a preferred carrier of medicinal agents and dyes due to their size, availability of surface modification and the flexibility enabling the integration of several functional components into a single system. This makes it possible to direct the development of nanoparticles towards applications in the treatment and diagnosis of glial tumors. This dual approach helps to understand the location of the tumor tissue, bio-distribution of nanoparticles, and treatment progress and effectiveness. In order to improve the treatment and diagnosis approaches, various strategies can be applied to modify the surface of nanoparticles, including surface markers or so-called ligands and use the characteristics of the tumor microenvironment with specific targets which respond to specific stimuli. In this paper we review various strategies for the improvement of treatment and diagnosis of glial tumors, describe some surface markers and talk about opportunities for the introduction of nanoparticles into everyday clinical practice.

About the Authors

I. F. Gareev
Bashkir State Medical University
Russian Federation

Gareev Ilgiz Fanilevich — Post-graduate student of the Department of Neurosurgery and Medical Rehabilitation with the Course of Additional Professional Education 

3 Lenin str., Ufa, 450008



O. A. Beylerli
Bashkir State Medical University
Russian Federation

Beylerli Ozal Arzuman — Post-graduate student of the Department of Urology with the Course of Additional Professional Education

3 Lenin str., Ufa, 450008



V. N. Pavlov
Bashkir State Medical University
Russian Federation

Pavlov Valentin Nikolaevich — Doctor of Medical Sciences, Corresponding Member of the Russian Academy of Sciences, Rector, Head of the Department of Urology with the Course of Additional Professional Education 

3 Lenin str., Ufa, 450008



Shiguang Zhao
Harbin Medical University
China

Shiguang Zhao — Professor, Head of the Department of Neurosurgery

157 Baojian Rd, Nangang Qu, Haerbin Shi, Heilongjiang Sheng, 150081, China



Xin Chen
Harbin Medical University
China

Xin Chen — Assistant lecturer of the Department of Neurosurgery, Pharmacologist 

157 Baojian Rd, Nangang Qu, Haerbin Shi, Heilongjiang Sheng, 150081, China



Zhixing Zheng
Harbin Medical University
China

Zhixing Zheng — Assistant lecturer of the Department of Neurosurgery, Neurosurgeon 

157 Baojian Rd, Nangang Qu, Haerbin Shi, Heilongjiang Sheng, 150081, China



Chen Shen
Harbin Medical University
China

Chen Shen — Assistant lecturer of the Department of Neurosurgery, Neurosurgeon 

157 Baojian Rd, Nangang Qu, Haerbin Shi, Heilongjiang Sheng, 150081, China



Jinxian Sun
Harbin Medical University
China

Jingxian Sun — Post-graduate student of the Department of Neurosurgery 

157 Baojian Rd, Nangang Qu, Haerbin Shi, Heilongjiang Sheng, 150081, China



References

1. Howell A.E., Zheng J., Haycock P.C., McAleenan A., Relton C., Martin R.M., et al. Use of mendelian randomization for identifying risk factors for brain tumors. Front Genet. 2018;9:525. DOI: 10.3389/fgene.2018.00525

2. Merve A., Millner T.O., Marino S. Integrated phenotype-genotype approach in diagnosis and classification of common CNS tumours. Histopathology. 2019, 01 March. DOI: 10.1111/his.13849

3. Wu D.F., He W., Lin S., Han B., Zee C.S. Using real-time fusion imaging constructed from contrast-enhanced ultrasonography and magnetic resonance imaging for high-grade glioma in neurosurgery. World Neurosurg. 2019, Jan 21. PII: S1878-8750(19)30098-1. DOI: 10.1016/j.wneu.2018.12.215

4. Bagley S.J., Schwab R.D., Nelson E., Viaene A.N., Binder Z.A., Lustig R.A., et al. Histopathologic quantification of viable tumor versus treatment effect in surgically resected recurrent glioblastoma. J Neurooncol. 2019;141(2):421–9. DOI: 10.1007/s11060-018-03050-6

5. Berberat J., McNamara J., Remonda L., Bodis S., Rogers S. Diffusion tensor imaging for target volume definition in glioblastoma multiforme. Strahlenther Onkol. 2014;190(10):939–43. DOI: 10.1007/s00066-014-0676-3

6. Metaweh N.A.K., Azab A.O., El Basmy A.A.H., Mashhour K.N., El Mahdy W.M. Contrast-enhanced perfusion MR imaging to differentiate between recurrent/residual brain neoplasms and radiation necrosis. Asian Pac J Cancer Prev. 2018;19(4):941–8. DOI: 10.22034/APJCP.2018.19.4.941

7. Martens K., Meyners T., Rades D., Tronnier V., Bonsanto M.M., Petersen D., et al. The prognostic value of tumor necrosis in patients undergoing stereotactic radiosurgery of brain metastases. Radiat Oncol. 2013;8:162. DOI: 10.1186/1748-717X-8-162

8. Newton S.L., Kalamaha K., Fernandes H.D. Temozolomideinduced aplastic anemia treated with eltrombopag and granulocyte colony stimulating factor: a report of a rare complication. Cureus. 2018;10(9):e3329. DOI: 10.7759/cureus.3329

9. Ladha H., Pawar T., Gilbert M.R., Mandel J., O-Brien B., Conrad C., et al. Wound healing complications in brain tumor patients on Bevacizumab. J Neurooncol. 2015;124(3):501–6. DOI: 10.1007/s11060015-1868-0

10. Han X., Xu K., Taratula O., Farsad K. Applications of nanoparticles in biomedical imaging. Nanoscale. 2019;11(3):799–819. DOI: 10.1039/c8nr07769j

11. Chen K.T., Wei K.C., Liu H.L. Theranostic strategy of focused ultrasound induced blood-brain barrier opening for CNS disease treatment. Front Pharmacol. 2019;10:86. DOI: 10.3389/fphar.2019.00086

12. Grabrucker A.M., Chhabra R., Belletti D., Forni F. Nanoparticles as blood–brain barrier permeable CNS targeted drug delivery systems. Top Med Chem. 2014;10:71–89. DOI: 10.1007/7355_2013_22

13. Dixit S., Novak T., Miller K., Zhu Y., Kenney M.E., Broome A.M. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale. 2015;7:1782–90. DOI: 10.1039/c4nr04853a

14. Bien-Ly N., Yu Y.J., Bumbaca D., Elstrott J., Boswell C.A., Zhang Y., et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med. 2014;211(2):233–44. DOI: 10.1084/jem.20131660

15. Porru M., Zappavigna S., Salzano G., Luce A., Stoppacciaro A., Balestrieri M.L., et al. Medical treatment of orthotopic glioblastoma with transferrin-conjugated nanoparticles encapsulating zoledronic acid. Oncotarget 2014;5:10446–59. DOI: 10.18632/oncotarget.2182

16. Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 1986; 46: 6387–92. PMID: 2946403

17. Rajora M., Ding L., Valic M., Jiang W., Overchuk M., Chen J., et al. Tailored theranostic apolipoprotein E3 porphyrin-lipid nanoparticles target glioblastoma tumours. Chem Sci. 2017;8(8):5371–84. DOI: 10.1039/c7sc00732a

18. Hayward S.L., Wilson C.L., Kidambi S. Hyaluronic acid-conjugated liposome nanoparticles for targeted delivery to CD44 overexpressing glioblastoma cells. Oncotarget. 2016;7(23): 34158–71. DOI: 10.18632/oncotarget.8926

19. Rosenblum D., Joshi N., Tao W., Karp J.M., Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1410. DOI: 10.1038/s41467-018-03705-y

20. Parayath N.N., Amiji M.M. Therapeutic targeting strategies using endogenous cells and proteins. J Control Release. 2017;258:81–94. DOI: 10.1016/j.jconrel.2017.05.004

21. Kumar A., Lee J.-Y., Kim H.-S. Selective fluorescence sensing of 3, 5-dinitrosalicylic acid based on pyrenesulfonamide-functionalized inorganic/organic hybrid nanoparticles. J Ind Eng Chem. 2016;44:82–9. DOI: 10.1016/j.jiec.2016.08.010

22. Anselmo A.C., Mitragotri S. A review of clinical translation of inorganic nanoparticles. AAPS J. 2015;17(5):1041–54. DOI: 10.1208/s12248-015-9780-2

23. Sherwood J., Xu Y., Lovas K., Qin Y., Bao Y. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities. J Magn Magn Mater. 2017;427:220–4. DOI: 10.1016/j.jmmm.2016.10.039

24. Sofias A.M., Dunne M., Storm G., Allen C. The battle of “nano” paclitaxel. Adv Drug Deliv Rev. 2017;122:20–30. DOI: 10.1016/j.addr.2017.02.003

25. Hu Q., Gao X., Gu G., Kang T., Tu Y., Liu Z., et al. Glioma therapy using tumor homing and penetrating peptide-functionalized PEG–PLA nanoparticles loaded with paclitaxel. Biomaterials. 2013;34(22):5640– 50. DOI: 10.1016/j.biomaterials.2013.04.025

26. Xin H., Sha X., Jiang X., Zhang W., Chen L., Fang X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials. 2012;33(32):8167–76. DOI: 10.1016/j.biomaterials.2012.07.046

27. Colen C.B., Shen Y., Ghoddoussi F., Yu P., Francis T.B., Koch B.J., et al. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia. 2011;13(7):620–32. PMID: 21750656

28. Cheng Y., Dai Q., Morshed R.A., Fan X., Wegscheid M.L., Wainwright D.A., et al. Blood–brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small. 2014;10(24):5137–50. DOI: 10.1002/smll.201400654

29. Pang L., Qin J., Han L., Zhao W., Liang J., Xie Z., et al. Exploiting macrophages as targeted carrier to guide nanoparticles into glioma. Oncotarget. 2016;7(24):37081–91. DOI: 10.18632/oncotarget.9464

30. Ren Y., Kang C.S., Yuan X.B., Zhou X., Xu P., Han L., et al. Co-delivery of as-miR-21 and 5-FU by poly(amidoamine) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym. 2010;21(3):303– 14. DOI: 10.1163/156856209X415828

31. Yang J., Li Y., Zhang T., Zhang X. Development of bioactive materials for glioblastoma therapy. Bioact Mater. 2016;1(1):29–38. DOI: 10.1016/j.bioactmat.2016.03.003

32. Khalid M.K., Asad M., Henrich-Noack P., Sokolov M., Hintz W., Grigartzik L., et al. Evaluation of toxicity and neural uptake in vitro and in vivo of superparamagnetic iron oxide nanoparticles. Int J Mol Sci. 2018;19(9): E2613. DOI: 10.3390/ijms19092613

33. Pathak R.A., Hemal A.K. Intraoperative ICG-fluorescence imaging for robotic-assisted urologic surgery: current status and review of literature. Int Urol Nephrol. 2019, March 22. DOI: 10.1007/s11255-019-02126-0

34. Stanga P.E., Lim J.I., Hamilton P. Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidencebased update. Ophthalmology. 2003;110(1):15–21. PMID: 12511340

35. Halle B.M., Poulsen T.D., Pedersen H.P. Indocyanine green plasma disappearance rate as dynamic liver function test in critically ill patients. Acta Anaesthesiol Scand. 2014;58(10):1214–9. DOI: 10.1111/aas.12406

36. Takagi Y., Kikuta K., Nozaki K., Sawamura K., Hashimoto N. Detection of a residual nidus by surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography in a child with a cerebral arteriovenous malformation. J Neurosurg. 2007;107(5):416–8. DOI: 10.3171/PED-07/11/416

37. Shen C., Wang X., Zheng Z., Gao C., Chen X., Zhao S., et al. Doxorubicin and indocyanine green loaded superparamagnetic iron oxide nanoparticles with PEGylated phospholipid coating for magnetic resonance with fluorescence imaging and chemotherapy of glioma. Int J Nanomedicine. 2018;14:101–17. DOI: 10.2147/IJN.S173954

38. Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci. 2014;1(2):13. DOI: 10.15226/2374-6866/1/2/00109.

39. Fabel K., Dietrich J., Hau P., Wismeth C., Winner B., Przywara S., et al. Long-term stabilization in patients with malignant glioma after treatment with liposomal doxorubicin. Cancer. 2001;92(7):1936–42. PMID: 11745268

40. Hau P., Fabel K., Baumgart U., Rümmele P., Grauer O., Bock A., et al. Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer. 2004;100(6):1199–207. DOI: 10.1002/cncr.20073

41. Ananda S., Nowak A.K., Cher L., Dowling A., Brown C., Simes J., et al. Phase 2 trial of temozolomide and pegylated liposomal doxorubicin in the treatment of patients with glioblastoma multiforme following concurrent radiotherapy and chemotherapy. J Clin Neurosci. 2011;18(11):1444–8. DOI: 10.1016/j.jocn.2011.02.026

42. Papademetriou I.T., Porter T. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer. Ther Deliv. 2015;6(8):989–1016. DOI: 10.4155/tde.15.48


Review

For citations:


Gareev I.F., Beylerli O.A., Pavlov V.N., Zhao Sh., Chen X., Zheng Zh., Shen Ch., Sun J. Nanoparticles: a New Approach to the Diagnosis and Treatment of Cerebral Glial Tumours. Creative surgery and oncology. 2019;9(1):66-74. (In Russ.) https://doi.org/10.24060/2076-3093-2019-9-1-66-74

Views: 4804


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)