Preview

Creative surgery and oncology

Advanced search

Genetic Predictors of Malignancy: a Literature Review

https://doi.org/10.24060/2076-3093-2021-11-2-157-165

Abstract

The review covers recent research on cancer as a genetic disease manifesting both sporadically and in germline through variant genomic mutations or DNA rearrangements. This change can be point mutations, chromosomal aberrations or hypermethylation leading to DNA repair failures. Defects in tumour suppressor genes (BRCA1, BRCA2, CHEK2, PTCH1, etc.) underly hereditary predisposition to breast cancer (BC) and ovarian cancer (OC) due to genome instability. Studying somatic mutations is key to the understanding of carcinogenesis mechanisms and finding apt therapies. Heterogeneity of cancers renders the tumour mutation profiling uneasy. The treatment choice and efficacy in BC and OC depends on homologous recombination defects in tumour cells usually imposed by damaged BRCA1/2 genes. CHEK2- associated neoplasms account for most hereditary BCs linked to flaws in the DNA repair machinery. Overexpression of the PTCH1 protein is the target in breast, lung, ovarian, colonic cancers, etc.

Genetic research has fundamentally altered our understanding of the aetiology and pathogenesis of human malignancy. The molecular cancer phenotype is of paramount importance in the disease prognosis and treatment personalisation.

About the Authors

A. V. Pushkarev
Republican Clinical Oncological Dispensary
Russian Federation

Aleksey V. Pushkarev — Surgery Unit No. 5

Ufa, Russian Federation



M. G. Galeev
Republican Clinical Oncological Dispensary
Russian Federation

Marat G. Galeev — Cand. Sci. (Med.), Surgery Unit No. 5

Ufa, Russian Federation



V. A. Pushkarev
Republican Clinical Oncological Dispensary
Russian Federation

Vasiliy A. Pushkarev — Dr. Sci. (Med.), Unit No. 8

Ufa, Russian Federation



A. V. Sultanbaev
Republican Clinical Oncological Dispensary
Russian Federation

Aleksandr V. Sultanbaev — Cand. Sci. (Med.), Anticancer Drug Therapy Unit

Ufa, Russian Federation



References

1. Bochkov N.P., Ginter E.K., Puzyrev V.P. Hereditary diseases: national guideline. Moscow: GEOTAR-Media; 2013 (In Russ.).

2. Williams M.J., Sottoriva A., Graham T.A. Measuring clonal evolution in cancer with genomics. Annu Rev Genomics Hum Genet. 2019;20:309–29. DOI: 10.1146/annurev-genom-083117-021712

3. Korzhenevskaya M.A., Gorbunova V.N. (eds) Genetics in clinical practice. Saint Petersburg: SpetsLit; 2015 (In Russ.).

4. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular Biology of the Cell. 4th ed. New York: Garland Science; 2002.

5. Nussbaum R.L., McInnes R.R., Willard H.F., Hamosh A. Genetics in medicine. Elsevier; 2007.

6. Pushkarev A.V., Menshikov K.V., Pushkarev V.A., Sultanbaev A.V., Galeev M.G. The role of hereditary factors in the pathogenesis of breast cancer. Bashkortostan Medical Journal. 2020;2(86):70–8 (In Russ.).

7. Ignatova E.O., Frolova M.A., Petrovsky A.V., Malysheva E.V., Azhikina T.L., Tjulandin S.A. BRCA1-associated DNA repair dysfunction as a potential predictive biomarker to platinum-based chemotherapy in patients with triple negative breast cancer. Journal of N.N. Blokhin Russian Cancer Research Center RAMS. 2014;25(1–2):5–13 (In Russ.).

8. Silver D.P., Richardson A.L., Eklund A.C., Wang Z.C., Szallasi Z., Li Q., et al. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol. 2010;28(7):1145–53. DOI: 10.1200/JCO.2009.22.4725

9. Telli M.L., Hellyer J., Audeh W., Jensen K.C., Bose S., Timms K.M., et al. Homologous recombination deficiency (HRD) status predicts response to standard neoadjuvant chemotherapy in patients with triplenegative or BRCA1/2 mutation-associated breast cancer. Breast Cancer Res Treat. 2018;168(3):625–30. DOI: 10.1007/s10549-017-4624-7

10. Lips E.H., Mulder L., Oonk A., van der Kolk L.E., Hogervorst F.B., Imholz A.L., et al. Triple-negative breast cancer: BRCAness and concordance of clinical features with BRCA1-mutation carriers. Br J Cancer. 2013;108(10):2172–7. DOI: 10.1038/bjc.2013.144

11. Joosse S.A., Brandwijk K.I., Mulder L., Wesseling J., Hannemann J., Nederlof P.M. Genomic signature of BRCA1 deficiency in sporadic basal-like breast tumors. Genes Chromosomes Cancer. 2011;50(2):71–81. DOI: 10.1002/gcc.20833

12. de Ruijter T.C., van der Heide F., Smits K.M., Aarts M.J., van Engeland M., Heijnen V.C.G. Prognostic DNA methylation markers for hormone receptor breast cancer: a systematic review. Breast Cancer Res. 2020;22(1):13. DOI: 10.1186/s13058-020-1250-9

13. Darbeheshti F., Izadi P., Emami Razavi A.N., Yekaninejad M.S., Tavakkoly Bazzaz J. Comparison of BRCA1 Expression between Triple- Negative and Luminal Breast Tumors. Iran Biomed J. 2018;22(3):210–4. DOI: 10.22034/ibj.22.3.210

14. Wen Y.H., Ho A., Patil S., Akram M., Catalano J., Eaton A., et al. Id4 protein is highly expressed in triple-negative breast carcinomas: possible implications for BRCA1 downregulation. Breast Cancer Res Treat. 2012;135(1):93–102. DOI: 10.1007/s10549-012-2070-0

15. Aloraifi F., Alshehhi M., McDevitt T., Cody N., Meany M., O’Doherty A., et al. Phenotypic analysis of familial breast cancer: comparison of BRCAx tumors with BRCA1-, BRCA2-carriers and non-familial breast cancer. Eur J Surg Oncol. 2015;41(5):641–6. DOI: 10.1016/j.ejso.2015.01.021

16. Pushkarev A.V., Sultanbaeva N.I., Pushkarev V.A., Nasretdinov A.F., Menshikov K.V., Musin SH.I., et al. Spectrum and frequency of BRCA1, BRCA2, CHEK2, PALB2, RAD50 mutations in breast cancer patients in the Republic of Bashkortostan. Kazan medical journal. 2020;101(5):691–7 (In Russ.). DOI:10.17816/КМJ2020-691

17. Ghoussaini M., Pharoah P.D.P., Easton D.F. Inherited genetic susceptibility to breast cancer: the beginning of the end or the end of the beginning? Am J Pathol. 2013;183(4):1038–51. DOI: 10.1016/j.ajpath.2013.07.003

18. Zhu B., Mukherjee A., Machiela M.J., Song L., Hua X., Shi J., et al. An investigation of the association of genetic susceptibility risk with somatic mutation burden in breast cancer. Br J Cancer. 2016;115(6):752–60. DOI: 10.1038/bjc.2016.223

19. Iurlaro R., León-Annicchiarico C.L., Muñoz-Pinedo C. Regulation of cancer metabolism by oncogenes and tumor suppressors. Methods Enzymol. 2014;542:59–80. DOI: 10.1016/B978-0-12-416618-9.00003-0

20. Nalepa G., Clapp D.W. Fanconi anaemia and cancer: an intricate relationship. Nat Rev Cancer. 2018;18(3):168–85. DOI: 10.1038/nrc.2017.116

21. ClinVar. Bethesda: National Center for Biotechnology Information. [cited 2020 Apr 7]. Available from: https://www.clinicalgenome.org/data-sharing/clinvar/

22. Cataloge of Somatic Mutations in Cancer. Hinxton: Sanger Institute. C 2004. [cited 2020 Apr 7]. Available from: https://сancer.sanger.ac.uk/cosmic

23. Leedom T.P., LaDuca H., McFarland R., Li S., Dolinsky J.S., Chao E.C. Breast cancer risk is similar for CHEK2 founder and non-founder mutation carriers. Cancer Genet. 2016;209(9):403–7. DOI: 10.1016/j.cancergen.2016.08.005

24. Jalilvand M., Oloomi M., Najafipour R., Alizadeh S.A., Saki N., Rad F.S., et al. An association study between CHEK2 gene mutations and susceptibility to breast cancer. Comp Clin Path. 2017;26(4):837–45. DOI: 10.1007/s00580-017-2455-x

25. Kriege M., Hollestelle A., Jager A., Huijts P.E., Berns E.M., Sieuwerts A.M., et al. Survival and contralateral breast cancer in CHEK2 1100delC breast cancer patients: impact of adjuvant chemotherapy. Br J Cancer. 2014;111(5):1004–13. DOI: 10.1038/bjc.2014.306

26. Reiner A.S., Sisti J., John E.M., Lynch C.F., Brooks J.D., Mellemkjær L., et al. Breast cancer family history and contralateral breast cancer risk in young women: an update from the women’s environmental cancer and radiation epidemiology study. J Clin Oncol. 2018;36(15):1513–20. DOI: 10.1200/JCO.2017.77.3424

27. Schmidt M.K., Hogervorst F., van Hien R., Cornelissen S., Broeks A., Adank M.A., et al. Age- and Tumor Subtype-Specific Breast Cancer Risk Estimates for CHEK2*1100delC Carriers. J Clin Oncol. 2016;34(23):2750–60. DOI: 10.1200/JCO.2016.66.5844

28. Zhang S., Phelan C.M., Zhang P., Rousseau F., Ghadirian P., Robidoux A., et al. Frequency of the CHEK2 1100delC mutation amond women with breast cancer: an international study. Cancer Res. 2008;68(7):2154–7. DOI: 10.1158/0008-5472.CAN-07-5187

29. Chekmariova E.V., Sokolenko A.P., Buslov K.G., Iyevleva A.G., Ulibina Y.M., Rozanov M.E., et al. CHEK2 1100delC mutation is frequent among Russian breast cancer patients. Breast Cancer Res Treat. 2006;100(1):99–102. DOI: 10.1007/s10549-006-9227-7

30. Näslund-Koch C., Nordestgaard B.G., Bojesen S.E. Increased risk for other cancers in addition to breast cancer for CHEK2*1100delC heterozygotes estimated from the copenhagen general population study. J Clin Oncol. 2016;34(11):1208–16. DOI: 10.1200/JCO.2015.63.3594

31. Adank M.A., Jonker M.A., Kluijt I., van Mil S.E., Oldenburg R.A., Mooi W.J., et al. CHEK2*1100delC homozygosity is associated with a high breast cancer risk in women. J Med Genet. 2011;48(12):860–3. DOI: 10.1136/jmedgenet-2011-100380

32. Nagel J.H., Peeters J.K., Smid M., Sieuwerts A.M., Wasielewski M., de Weerd V., et al. Gene expression profiling assigns CHEK2 1100delC breast cancers to the luminal intrinsic subtypes. Breast Cancer Res Treat. 2012;132(2):439–48. DOI: 10.1007/s10549-011-1588-x

33. Huszno J., Kolosza Z. Molecular characteristics of breast cancer according to clinicopathological factors. Mol Clin Oncol. 2019;11(2):192–200. DOI: 10.3892/mco.2019.1869

34. Muranen T.A., Greco D., Blomqvist C., Aittomäki K., Khan S., Hogervorst F., et al. Genetic modifiers of CHEK2*1100delC-associated breast cancer risk. Genet Med. 2017;19(5):599–603. DOI: 10.1038/gim.2016.147

35. Bogdanova N., Sokolenko A.P., Iyevleva A.G., Abysheva S.N., Blaut M., Bremer M., et al. PALB2 mutations in German and Russian patients with bilateral breast cancer. Breast Cancer Res Treat. 2011;126(2):545–50. DOI: 10.1007/s10549-010-1290-4

36. Domagala P., Wokolorczyk D., Cybulski C., Huzarski T., Lubinski J., Domagala W. Different CHEK2 germline mutations are associated with distinct immunophenotypic molecular subtypes of breast cancer. Breast Cancer Res Treat. 2012;132(3):937–45. DOI: 10.1007/s10549-011-1635-7

37. Kleiblova P., Stolarova L., Krizova K., Lhota F., Hojny J., Zemankova P., et al. Germline CHEK2 gene mutations in hereditary breast cancer predisposition — mutation types and their biological and clinical relevance. Klin Onkol. 2019;32(Suppl 2):36–50. DOI: 10.14735/amko2019S36

38. Kwei K.A., Kung Y., Salari K., Holcomb I.N., Pollack J.R. Genomic instability in breast cancer: pathogenesis and clinical implications. Mol Oncol. 2010;4(3):255–66. DOI: 10.1016/j.molonc.2010.04.001

39. Lord C.J., Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16(2):110–20. DOI: 10.1038/nrc.2015.21

40. Larsen M.J., Thomassen M., Tan Q., Lænkholm A.V., Bak M., Sørensen K.P., et al. RNA profiling reveals familial aggregation of molecular subtypes in non-BRCA1/2 breast cancer families. BMC Med Genomics. 2014;7:9. DOI: 10.1186/1755-8794-7-9

41. Knappskog S., Berge E.O., Chrisanthar R., Geisler S., Staalesen V., Leirvaag B., et al. Concomitant inactivation of the p53- and pRB functional pathways predicts resistance to DNA damaging drugs in breast cancer in vivo. Mol Oncol. 2015;9(8):1553–64. DOI: 10.1016/j.molonc.2015.04.008

42. Wang C.Y., Chang Y.C., Kuo Y.L., Lee K.T., Chen P.S., Cheung C., et al. Mutation of the PTCH1 gene predicts recurrence of breast cancer. Sci Rep. 2019;(9):16359. DOI: 10.1038/s41598-019-52617-4

43. Adolphe C., Hetherington R., Ellis T., Wainwright B. Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res. 2006;66(4):2081–8. DOI: 10.1158/0008-5472.CAN-05-2146

44. Katoh M. Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers. Clin Sci (Lond). 2019;133(8):953–70. DOI: 10.1042/CS20180845

45. Monkkonen T., Lewis M.T. New paradigms for the Hedgehog signaling network in mammary gland development and breast Cancer. Biochim Biophys Acta Rev Cancer. 2017;1868(1):315–32. DOI: 10.1016/j.bbcan.2017.06.003

46. Riaz S.K., Khan J.S., Shah S.T.A., Wang F., Ye L., Jiang W.G., et al. Involvement of hedgehog pathway in early onset, aggressive molecular subtypes and metastatic potential of breast cancer. Cell Commun Signal. 2018;16(1):3. DOI: 10.1186/s12964-017-0213-y

47. Kohno T. Implementation of “clinical sequencing” in cancer genome medicine in Japan. Cancer Sci. 2018;109(3):507–12. DOI: 10.1111/cas.13486

48. Pennington K.P., Walsh T., Harrell M.I., Lee M.K., Pennil C.C., Rendi M.H., et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res. 2014;20(3):764–75. DOI: 10.1158/1078-0432.CCR-13-2287

49. Janoueix-Lerosey I., Lequin D., Brugières L., Ribeiro A., de Pontual L., Combaret V., et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature. 2008;455(7215):967–70. DOI: 10.1038/nature07398

50. Mitsudomi T., Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. 2007;98(12):1817–24. DOI: 10.1111/j.1349-7006.2007.00607.x

51. Reddy B.Y., Miller D.M., Tsao H. Somatic driver mutations in melanoma. Cancer. 2017;123(S11):2104–17. DOI: 10.1002/cncr.30593

52. Kim K.B., Dunn C.T., Park K.S. Recent progress in mapping the emerging landscape of the small-cell lung cancer genome. Exp Mol Med. 2019;51(12):1–13. DOI: 10.1038/s12276-019-0349-5


Review

For citations:


Pushkarev A.V., Galeev M.G., Pushkarev V.A., Sultanbaev A.V. Genetic Predictors of Malignancy: a Literature Review. Creative surgery and oncology. 2021;11(2):157-165. (In Russ.) https://doi.org/10.24060/2076-3093-2021-11-2-157-165

Views: 1572


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)