Preview

Creative surgery and oncology

Advanced search

Alloplastic and Implant Materials for Bone Grafting: a Literature Review

https://doi.org/10.24060/2076-3093-2021-11-4-343-353

Abstract

Bone reconstruction aft er trauma, infection, tumour or congenital genetic disorder is an important subject of modern medicine usually relying on bone graft ing materials. Autologous bone or autograft is still considered the “gold standard” most eff ective in bone defect reconstruction and osseous regeneration. Having the advantages of autograft ing, a series of issues remain related to a limited donor material, painful graft taking and the risk of putative complications (nonunions, graft rejection, infection, iatrogenic fractures, post-microsurgery arteriovenous shunt thrombosis, etc.). Th erefore, improved biomaterials are demanded to adequately meet the autograft criteria. Choosing optimal graft materials becomes relevant, aside to the rationale of selecting new surgical techniques. Th e osteoconductive and osteoinductive property evaluation in modern osteoplastic materials comprises a research avenue into optimal graft development for osseous correction in maxillofacial surgery, neurosurgery, traumatology and orthopaedics. Such biomaterials can be combined with alloplastic graft s to attain the required properties of osteoconduction, osteoinduction and osteogenesis. Th is analytic literature review focuses on current state-of-the-art in alloplastic graft ing that, in our opinion, grounds the progress of auto- and allograft innovative development.

About the Authors

U. F. Mukhametov
G.G. Kuvatov Republican Clinical Hospital
Russian Federation

Ural F. Mukhametov, Cand. Sci. (Med.), Trauma and Orthopaedic Unit

Ufa



S. V. Lyulin
Medical Centre “Carmel”
Russian Federation

Sergey V. Lyulin, Dr. Sci. (Med.), Department of Spine Surgery and Neurosurgery

Chelyabinsk



D. Y. Borzunov
Ural State Medical University
Russian Federation

Dmitry Y. Borzunov, Dr. Sci. (Med.), Prof., Department of Traumatology and Orthopaedics

Ekaterinburg



I. F. Gareev
Bashkir State Medical University
Russian Federation

Ilgiz F. Gareev, MD Ph.D., Central Research Laboratory

Ufa



O. A. Beylerli
Bashkir State Medical University
Russian Federation

Ozal A. Beylerli, MD Ph.D., Central Research Laboratory

Ufa



G. Yang
First Affi liated Hospital of Harbin Medical University
China

Guang Yang, MD Ph.D., Prof., Department of Neurosurger

Harbin



References

1. Busch A., Wegner A., Haversath M., Jäger M. Bone substitutes in orthopaedic surgery: current status and future perspectives. Z Orthop Unfall. 2021;159(3):304–13. DOI: 10.1055/a-1073-8473

2. Kofi na V., Demirer M., Erdal B.S., Eubank T.D., Yildiz V.O., Tatakis D.N., et al. Bone graft ing history aff ects soft tissue healing following implant placement. J Periodontol. 2021;92(2):234–43. DOI: 10.1002/ JPER.19-0709

3. Villatte G., Martins A., Erivan R., Pereira B., Descamps S., Boisgard S. Use of allograft to reconstruct anterior bony glenoid defect in chronic glenohumeral instability: a systematic review. Arch Orthop Trauma Surg. 2020;140(10):1475–85. DOI: 10.1007/s00402-020-03511-6

4. Burnier M., Nguyen N.T.V., Morrey M.E., O’Driscoll S.W., SanchezSotelo J. Revision elbow arthroplasty using a proximal ulnar allograft with allograft triceps for combined ulnar bone loss and triceps insuffi ciency. J Bone Joint Surg Am. 2020;102(22):2001–7. DOI: 10.2106/ JBJS.20.00414

5. Schmidt A.H. Autologous bone graft : Is it still the gold standard? Injury. 2021;52(Suppl. 2):S18–22. DOI: 10.1016/j.injury.2021.01.043

6. Coyac B.R., Sun Q., Leahy B., Salvi G., Yuan X., Brunski J.B., et al. Optimizing autologous bone contribution to implant osseointegration. J Periodontol. 2020;91(12):1632–44. DOI: 10.1002/JPER.19-0524

7. Ek E.T., Johnson P.R., Bohan C.M., Padmasekara G. Autologous bone graft ing and double screw fi xation for unstable scaphoid nonunions with cavitary bone loss. J Hand Surg Eur Vol. 2021;46(2):205–6. DOI: 10.1177/1753193420946656

8. Filipowska J., Tomaszewski K.A., Niedźwiedzki Ł., Walocha J.A., Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017;20(3):291– 302. DOI: 10.1007/s10456-017-9541-1

9. Diomede F., Marconi G.D., Fonticoli L., Pizzicanella J., Merciaro I., Bramanti P., et al. Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci. 2020;21(9):3242. DOI: 10.3390/ijms21093242

10. Haugen H.J., Lyngstadaas S.P., Rossi F., Perale G. Bone graft s: which is the ideal biomaterial? J Clin Periodontol. 2019;46(Suppl. 21):92–102. DOI: 10.1111/jcpe.13058

11. Misch C.M. Bone augmentation using allogeneic bone blocks with recombinant bone morphogenetic protein-2. Implant Dent. 2017;26(6):826–31. DOI: 10.1097/ID.0000000000000693

12. Canullo L., Genova T., Rakic M., Sculean A., Miron R., Muzzi M., et al. Eff ects of argon plasma treatment on the osteoconductivity of bone graft ing materials. Clin Oral Investig. 2020;24(8):2611–23. DOI: 10.1007/s00784-019-03119-0

13. Baldwin P., Li D.J., Auston D.A., Mir H.S., Yoon R.S., Koval K.J. Autograft , allograft , and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J Orthop Trauma. 2019;33(4):203–13. DOI: 10.1097/BOT.0000000000001420

14. Lobb D.C., DeGeorge B.R. Jr, Chhabra A.B. Bone graft substitutes: current concepts and future expectations. J Hand Surg Am. 2019;44(6):497–505.e2. DOI: 10.1016/j.jhsa.2018.10.032

15. Sohn H.S., Oh J.K. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res. 2019;23:9. DOI: 10.1186/ s40824-019-0157-y

16. Epple C., Haumer A., Ismail T., Lunger A., Scherberich A., Schaefer D.J., et al. Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction. Biomaterials. 2019;192:118–27. DOI: 10.1016/j.biomaterials.2018.11.008

17. Calcei J.G., Rodeo S.A. Orthobiologics for bone healing. Clin Sports Med. 2019;38(1):79–95. DOI: 10.1016/j.csm.2018.08.005

18. Niederauer G.G., Lee D.R., Sankaran S. Bone graft ing in arthroscopy and sports medicine. Sports Med Arthrosc Rev. 2006;14(3):163–8. DOI: 10.1097/00132585-200609000-00008

19. Grambart S.T., Anderson D.S., Anderson T.D. Bone graft ing options. Clin Podiatr Med Surg. 2020;37(3):593–600. DOI: 10.1016/j. cpm.2020.03.012

20. Golubovsky J.L., Ejikeme T., Winkelman R., Steinmetz M.P. Osteobiologics. Oper Neurosurg (Hagerstown). 2021;21(Suppl 1):S2–9. DOI: 10.1093/ons/opaa383

21. Zhao H., Liang G., Liang W., Li Q., Huang B., Li A., et al. In vitro and in vivo evaluation of the pH-neutral bioactive glass as high performance bone graft s. Mater Sci Eng C Mater Biol Appl. 2020;116:111249. DOI: 10.1016/j.msec.2020.111249

22. Hosseini F.S., Nair L.S., Laurencin C.T. Inductive materials for regenerative engineering. J Dent Res. 2021;100(10):1011–9. DOI: 10.1177/00220345211010436

23. Nunziato C., Williams J., Williams R. Synthetic bone graft substitute for treatment of unicameral bone cysts. J Pediatr Orthop. 2021;41(1):e60– 6. DOI: 10.1097/BPO.0000000000001680

24. Cakir T., Yolas C. Synthetic bone graft versus autograft obtained from the spinous process in posterior lumbar interbody fusion. Turk Neurosurg. 2021;31(2):199–205. DOI: 10.5137/1019-5149.JTN.29765-20.2

25. Arif U., Haider S., Haider A., Khan N., Alghyamah A.A., Jamila N., et al. Biocompatible polymers and their potential biomedical applications: a review. Curr Pharm Des. 2019;25(34):3608–19. DOI: 10.2174/138161 2825999191011105148

26. Li H., Ma T., Zhang M., Zhu J., Liu J., Tan F. Fabrication of sulphonated poly(ethylene glycol)-diacrylate hydrogel as a bone graft ing scaffold. J Mater Sci Mater Med. 2018;29(12):187. DOI: 10.1007/s10856-018-6199-1

27. Bouler J.M., Pilet P., Gauthier O., Verron E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater. 2017;53:1–12. DOI: 10.1016/j.actbio.2017.01.076

28. Trombetta R., Inzana J.A., Schwarz E.M., Kates S.L., Awad H.A. 3D Printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng. 2017;45(1):23–44. DOI: 10.1007/ s10439-016-1678-3

29. Blank A., Riesgo A., Gitelis S., Rapp T. Bone graft s, substitutes, and augments in benign orthopaedic conditions current concepts. Bull Hosp Jt Dis (2013). 2017;75(2):119–27. PMID: 28583058

30. Brett E., Flacco J., Blackshear C., Longaker M.T., Wan D.C. Biomimetics of bone implants: the regenerative road. Biores Open Access. 2017;6(1):1–6. DOI: 10.1089/biores.2016.0044

31. Fukuba S., Okada M., Nohara K., Iwata T. Alloplastic bone substitutes for periodontal and bone regeneration in dentistry: current status and prospects. Materials (Basel). 2021;14(5):1096. DOI: 10.3390/ ma14051096

32. Battafarano G., Rossi M., De Martino V., Marampon F., Borro L., Secinaro A., et al. Strategies for bone regeneration: from graft to tissue engineering. Int J Mol Sci. 2021;22(3):1128. DOI: 10.3390/ ijms22031128

33. Zhao R., Yang R., Cooper P.R., Khurshid Z., Shavandi A., Ratnayake J. Bone graft s and substitutes in dentistry: a review of current trends and developments. Molecules. 2021;26(10):3007. DOI: 10.3390/molecules26103007

34. Gao C., Qiu Z.Y., Hou J.W., Tian W., Kou J.M., Wang X. Clinical observation of mineralized collagen bone graft ing aft er curettage of benign bone tumors. Regen Biomater. 2020;7(6):567–75. DOI: 10.1093/ rb/rbaa031

35. Jang H.Y., Shin J.Y., Oh S.H., Byun J.H., Lee J.H. PCL/HA hybrid microspheres for eff ective osteogenic differentiation and bone regeneration. ACS Biomater Sci Eng. 2020;6(9):5172–80. DOI: 10.1021/ acsbiomaterials.0c00550

36. Li G., Zhao M., Xu F., Yang B., Li X., Meng X., et al. Synthesis and biological application of polylactic acid. Molecules. 2020;25(21):5023. DOI: 10.3390/molecules25215023

37. Winter G.D., Simpson B.J. Heterotopic bone formed in a synthetic sponge in the skin of young pigs. Nature. 1969;223(5201):88–90. DOI: 10.1038/223088a0

38. Winter G.D. Heterotopic bone formation in a synthetic sponge. Proc R Soc Med. 1970;63(11 Part 1):1111–5. PMID: 5484927

39. Guzzo C.M., Nychka J.A. Bone “spackling” paste: Mechanical properties and in vitro response of a porous ceramic composite bone tissue scaffold. J Mech Behav Biomed Mater. 2020;112:103958. DOI: 10.1016/j.jmbbm.2020.103958

40. Panseri S., Montesi M., Hautcoeur D., Dozio S.M., Chamary S., De Barra E., et al. Bone-like ceramic scaffolds designed with bioinspired porosity induce a diff erent stem cell response. J Mater Sci Mater Med. 2021;32(1):3. DOI: 10.1007/s10856-020-06486-3

41. Wu K., Chen Y.C., Lin S.M., Chang C.H. In vitro and in vivo eff ectiveness of a novel injectable calcitonin-loaded collagen/ceramic bone substitute. J Biomater Appl. 2021;35(10):1355–65. DOI: 10.1177/0885328221989984

42. Kargozar S., Singh R.K., Kim H.W., Baino F. “Hard” ceramics for “Soft ” tissue engineering: Paradox or opportunity? Acta Biomater. 2020;115:1–28. DOI: 10.1016/j.actbio.2020.08.014

43. Dee P., You H.Y., Teoh S.H., Le Ferrand H. Bioinspired approaches to toughen calcium phosphate-based ceramics for bone repair. J Mech Behav Biomed Mater. 2020;112:104078. DOI: 10.1016/j. jmbbm.2020.104078

44. Zhang X., Zhou P., Chen W., Wu C. A study of hydroxyapatite ceramics and its osteogenesis. In: Ravaglioli Krajewski A., editors. Bioceramics and the human body. London: Elsevier Applied Science:1991. P. 408–16.

45. Coathup M.J., Hing K.A., Samizadeh S., Chan O., Fang Y.S., Campion C., et al. Effect of increased strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction. J Biomed Mater Res A. 2012;100(6):1550–5. DOI: 10.1002/jbm.a.34094

46. Wang J., Chen Y., Zhu X., Yuan T., Tan Y., Fan Y., et al. Effect of phase composition on protein adsorption and osteoinduction of porous calcium phosphate ceramics in mice. J Biomed Mater Res A. 2014;102(12):4234–43. DOI: 10.1002/jbm.a.35102

47. Wan B., Wang R., Sun Y., Cao J., Wang H., Guo J., et al. Building osteogenic microenvironments with strontium-substituted calcium phosphate ceramics. Front Bioeng Biotechnol. 2020;8:591467. DOI: 10.3389/fb ioe.2020.591467

48. Tovani C.B., Oliveira T.M., Soares M.P.R., Nassif N., Fukada S.Y., Ciancaglini P., et al. Strontium calcium phosphate nanotubes as bioinspired building blocks for bone regeneration. ACS Appl Mater Interfaces. 2020;12(39):43422–34. DOI: 10.1021/acsami.0c12434

49. Wang W., Yeung K.W.K. Bone graft s and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017;2(4):224–47. DOI: 10.1016/j.bioactmat.2017.05.007

50. Rizwan M., Hamdi M., Basirun W.J. Bioglass 45S5-based composites for bone tissue engineering and functional applications. J Biomed Mater Res A. 2017;105(11):3197–223. DOI: 10.1002/jbm.a.36156

51. Kang J.H., Jang K.J., Sakthiabirami K., Oh G.J., Jang J.G., Park C., et al. Fabrication and characterization of 45s5 bioactive glass/thermoplastic composite scaffold by ceramic injection printer. J Nanosci Nanotechnol. 2020;20(9):5520–4. DOI: 10.1166/jnn.2020.17670

52. Golovchak R., Brennan C., Fletcher J., Ignatova T., Jain H. Dynamics of structural relaxation in bioactive 45S5 glass. J Phys Condens Matter. 2020;32(29):295401. DOI: 10.1088/1361-648X/ab80f3

53. Baino F., Fiume E. Elastic mechanical properties of 45s5-based bioactive glass-ceramic scaffolds. Materials (Basel). 2019;12(19):3244. DOI: 10.3390/ma12193244

54. Begum S., Johnson W.E., Worthington T., Martin R.A. The influence of pH and fluid dynamics on the antibacterial effi cacy of 45S5 Bioglass. Biomed Mater. 2016;11(1):015006. DOI: 10.1088/1748-6041/11/1/015006

55. Bauer J., Silva E Silva A., Carvalho E.M., Ferreira P.V.C., Carvalho C.N., Manso A.P., et al. Dentin pretreatment with 45S5 and niobophosphate bioactive glass: Effects on pH, antibacterial, mechanical properties of the interface and microtensile bond strength. J Mech Behav Biomed Mater. 2019;90:374–80. DOI: 10.1016/j.jmbbm.2018.10.029

56. Zhao H., Liang G., Liang W., Li Q., Huang B., Li A., et al. In vitro and in vivo evaluation of the pH-neutral bioactive glass as high performance bone graft s. Mater Sci Eng C Mater Biol Appl. 2020;116:111249. DOI: 10.1016/j.msec.2020.111249

57. Selye H., Lemire Y., Bajusz E. Induction of bone, cartilage and hemopoietic tissue by subcutaneously implanted tissue diaphragms. Wilhelm Roux Arch Entwickl Mech Org. 1960;151(5):572–85. DOI: 10.1007/ BF00577813

58. Liu D., Zhu H., Zhao J., Pan L., Dai P., Gu X., et al. Synthesis of mesoporous gamma-Al2O3 with spongy structure: in-situ conversion of metal-organic frameworks and improved performance as catalyst support in hydrodesulfurization. Materials (Basel). 2018;11(7):1067. DOI: 10.3390/ma11071067

59. Denes E., Barrière G., Poli E., Lévêque G. Alumina biocompatibility. J Long Term Eff Med Implants. 2018;28(1):9–13. DOI: 10.1615/JLongTermEff MedImplants.2018025635

60. Naga S.M., El-Kady A.M., El-Maghraby H.F., Awaad M., Detsch R., Boccaccini A.R. Novel porous Al2O3-SiO2-TiO2 bone grafting materials: formation and characterization. J Biomater Appl. 2014;28(6):813– 24. DOI: 10.1177/0885328213483634

61. Byeon S.M., Lee M.H., Bae T.S. Shear bond strength of Al2O3 sandblasted Y-TZP ceramic to the orthodontic metal bracket. Materials (Basel). 2017;10(2):148. DOI: 10.3390/ma10020148

62. Shah A.M., Jung H., Skirboll S. Materials used in cranioplasty: a history and analysis. Neurosurg Focus. 2014;36(4):E19. DOI: 10.3171/2014.2.FOCUS13561

63. Xie Y., Li S., Zhang T., Wang C., Cai X. Titanium mesh for bone augmentation in oral implantology: current application and progress. Int J Oral Sci. 2020;12(1):37. DOI: 10.1038/s41368-020-00107-z

64. Herford A.S., Lowe I., Jung P. Titanium mesh grafting combined with recombinant human bone morphogenetic protein 2 for alveolar reconstruction. Oral Maxillofac Surg Clin North Am. 2019;31(2):309–15. DOI: 10.1016/j.coms.2018.12.007

65. Fujibayashi S., Neo M., Kim H.M., Kokubo T., Nakamura T. Osteoinduction of porous bioactive titanium metal. Biomaterials. 2004;25(3):443–50. DOI: 10.1016/s0142-9612(03)00551-9

66. Han Q., Wang C., Chen H., Zhao X., Wang J. Porous tantalum and titanium in orthopedics: a review. ACS Biomater Sci Eng. 2019;5(11):5798–824. DOI: 10.1021/acsbiomaterials.9b00493

67. Wang N., Li H., Wang J., Chen S., Ma Y., Zhang Z. Study on the anticorrosion, biocompatibility, and osteoinductivity of tantalum decorated with tantalum oxide nanotubes array fi lms. ACS Appl Mater Interfaces. 2012;4(9):4516–23. DOI: 10.1021/am300727v

68. Ballouze R., Marahat M.H., Mohamad S., Saidin N.A., Kasim S.R., Ooi J.P. Biocompatible magnesium-doped biphasic calcium phosphate for bone regeneration. J Biomed Mater Res B Appl Biomater. 2021;109(10):1426–35. DOI: 10.1002/jbm.b.34802

69. Coelho C.C., Padrão T., Costa L., Pinto M.T., Costa P.C., Domingues V.F., et al. The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Sci Rep. 2020;10(1):19098. DOI: 10.1038/s41598-020-76063-9

70. He F., Zhang J., Tian X., Wu S., Chen X. A facile magnesiumcontaining calcium carbonate biomaterial as potential bone graft . Colloids Surf B Biointerfaces. 2015;136:845–52. DOI: 10.1016/j. colsurfb .2015.10.027

71. Kasuga T., Maeda H., Kato K., Nogami M., Hata K., Ueda M. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials. 2003;24(19):3247–53. DOI: 10.1016/s0142-9612(03)00190-x

72. Naik A., Shepherd D.V., Shepherd J.H., Best S.M., Cameron R.E. The effect of the type of HA on the degradation of PLGA/HA composites. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):824–31. DOI: 10.1016/j.msec.2016.09.048

73. Singh D., Tripathi A., Zo S., Singh D., Han S.S. Synthesis of composite gelatinhyaluronic acid-alginate porous scaffold and evaluation for in vitro stem cell growth and in vivo tissue integration. Colloids Surf B Biointerfaces. 2014;116:502–9. DOI: 10.1016/j.colsurfb .2014.01.049

74. Dziadek M., Stodolak-Zych E., Cholewa-Kowalska K. Biodegradable ceramic-polymer composites for biomedical applications: A review. Mater Sci Eng C Mater Biol Appl. 2017;71:1175–91. DOI: 10.1016/j. msec.2016.10.014

75. Bellucci D., Sola A., Anesi A., Salvatori R., Chiarini L., Cannillo V. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation. Mater Sci Eng C Mater Biol Appl. 2015;51:196– 205. DOI: 10.1016/j.msec.2015.02.041

76. Dawson D.R. 3rd, El-Ghannam A., Van Sickels J.E., Naung N.Y. Tissue engineering: What is new? Dent Clin North Am. 2019;63(3):433–45. DOI: 10.1016/j.cden.2019.02.009


Review

For citations:


Mukhametov U.F., Lyulin S.V., Borzunov D.Y., Gareev I.F., Beylerli O.A., Yang G. Alloplastic and Implant Materials for Bone Grafting: a Literature Review. Creative surgery and oncology. 2021;11(4):343-353. (In Russ.) https://doi.org/10.24060/2076-3093-2021-11-4-343-353

Views: 5140


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)