Organ-on-a-chip Technology in Urology
https://doi.org/10.24060/2076-3093-2023-13-4-311-319
Abstract
Organs-on-chips (OOC) refer to microfluidic devices used to create biomimetic systems of physiological organs. The system contains engineered or natural miniature tissues grown inside microfluidic chips. Organ-on-a-chip technology enables numerous human pathologies to be reproduced, since classical animal models may fail to adequately predict the therapeutic response in humans. This technology can be an intermediate link in the animal-human research system. Moreover, in cancer studies, OOC simulate the three-dimensional hierarchical complexity of tumors in vivo and the tumor microenvironment, being an efficient and cost-effective solution for tumor growth studies and cancer drug screening. Organs-on-chips represent compact and easy-to-use microphysiological functional units simulating physical and biological processes in human body. This extends the possibility of preclinical studies, such as disease modeling or even the development of diagnostic devices. In this regard, the present study is aimed at reviewing the scientific literature in the field of microfluidic devices intended for use in urology and oncourology.
Keywords
About the Authors
A. G. VardikianRussian Federation
Andranik G. Vardikian — Postgraduate Student, Department of Urology with a Course of Advanced Professional Education, Stem Cells Laborator
Ufa
S. V. Piatnitskaia
Russian Federation
Svetlana V. Piatnitskaia — Senior Research Assistant, Cell Culture Laboratory, Department of Internal Diseases
Ufa
V. A. Solntsev
Russian Federation
Vadim A. Solntsev — Medical Research Assistant, Cell Culture Laboratory
Ufa
B. I. Shamsov
Russian Federation
Bedil I. Shamsov — Postgraduate Student, Department of Urology with a Course of Advanced Professional Education
Ufa
V. N. Pavlov
Russian Federation
Valentin N. Pavlov — Dr. Sci (Med.), Prof., Academician of the Russian Academy of Sciences, Department of Urology with a Course of Advanced Professional Education
Ufa
References
1. Fabre K., Berridge B., Proctor W.R., Ralston S., Will Y., Baran S.W., et al. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. Lab Chip. 2020;20(6):1049–57. DOI: 10.1039/c9lc01168d
2. Park S.M., Eom S., Hong H., Yoon J., Lee S.J., Kim B.Ch., et al. Reconstruction of in vivo-like in vitro model: enabling technologies of microfluidic systems for dynamic biochemical/mechanical stimuli. Microelectron Eng. 2019;203–204:6–24. DOI: 10.1016/j.mee.2018.10.010
3. Wu Q., Liu J., Wang X., Feng L., Wu J., Zhu X., et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online. 2020;19(1):9. DOI: 10.1186/s12938-020-0752-0
4. Sun W., Luo Z., Lee J., Kim H., Lee K., Tebon P., et al. Organ-on-achip for cancer and immune organs modeling. Adv Healthc Mater. 2019;8:1801363. DOI: 10.1002/adhm.201801363
5. Trujillo-de Santiago G., Flores-Garza B.G., Tavares-Negrete J.A., LaraMayorga I.M., González-Gamboa I., Zhang Y.S., et al. The Tumor-onChip: recent advances in the development of microfluidic systems to recapitulate the physiology of solid tumors. Materials. 2019;12:2945. DOI: 10.3390/ma12182945
6. Vormann M.K., Gijzen L., Hutter S., Boot L., Nicolas A., van den Heuvel A., et al. Nephrotoxicity and kidney transport assessment on 3D perfused proximal tubules. AAPS J. 2018;20:90. DOI: 10.1208/s12248-018-0248-z
7. Kramlinger V.M., Dalvie D., Heck C.J.S., Kalgutkar A.S., O’Neill J., Su D., et al. Future of biotransformation science in the pharmaceutical industry. Drug Metab Dispos. 2022;50(3):258–67. DOI: 10.1124/dmd.121.000658
8. Lee S.J., Lee H.A. Trends in the development of human stem cellbased non-animal drug testing models. Korean J Physiol Pharmacol. 2020;24(6):441–52. DOI: 10.4196/kjpp.2020.24.6.441
9. Andersen M.L., Winter L.M.F. Animal models in biological and biomedical research — experimental and ethical concerns. An Acad Bras Cienc. 2019;91(suppl 1):e20170238. DOI: 10.1590/0001-3765201720170238
10. European Parliament [Internet]. [cited 2022 Feb 25]. Available from: https://www.Europarl.Europa.Eu/Plenary/En/Vod.Html?Mode=chapter&vodLanguage=EN&vodId=6ea360e5-0dd3-Decd-2a72-642c028c0a34&date=20210708#
11. Ma C., Peng Y., Li H., Chen W. Organ-on-a-Chip: a new paradigm for drug development. Trends Pharmacol Sci. 2021;42(2):119–33. DOI: 10.1016/j.tips.2020.11.009
12. Liu X., Fang J., Huang S., Wu X., Xie X., Wang J., et al. Tumor-on-aChip: from bioinspired design to biomedical application. Microsyst Nanoeng. 2021;7:50. DOI: 10.1038/s41378-021-00277-8
13. Ingber D.E. Developmentally inspired human “Organs on Chips”. Development. 2018;145(16):dev156125. DOI: 10.1242/dev.156125
14. Huh D., Matthews B.D., Mammoto A., Montoya-Zavala M., Hsin H.Y., Ingber D.E. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662–8. DOI: 10.1126/science.1188302
15. Paloschi V., Sabater-Lleal M., Middelkamp H., Vivas A., Johansson S., van der Meer A., et al. Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc Res. 2021;117(14):2742–54. DOI: 10.1093/cvr/cvab088
16. Ma L.-D., Wang Y.-T., Wang J.-R., Wu J.-L., Meng X.-S., Hu P., et al. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip. 2018;18:2547–62. DOI: 10.1039/c8lc00333e
17. Marrero D., Pujol-Vila F., Vera D., Gabriel G., Illa X., Elizalde-Torrent A., et al. Gut-on-a-chip: Mimicking and monitoring the human intestine. Biosens Bioelectron. 2021;181:113156. DOI: 10.1016/j.bios.2021.113156
18. Chou D.B., Frismantas V., Milton Y., David R., Pop-Damkov P., Ferguson D., et al. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat Biomed Eng. 2020;4(4):394–406. DOI: 10.1038/s41551-019-0495-z
19. Soo J.Y.-C., Jansen J., Masereeuw R., Little M.H. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol. 2018;14:378–93. DOI: 10.1038/s41581-018-0003-9
20. Lee J., Kim S. Kidney-on-a-Chip: a new technology for predicting drug efficacy, interactions, and drug-induced nephrotoxicity. Curr Drug Metab. 2018;19(7):577–83. DOI: 10.2174/1389200219666180309101844
21. Homan K.A., Kolesky D.B., Skylar-Scott M.A., Herrmann J., Obuobi H., Moisan A., et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep. 2016;6:34845. DOI: 10.1038/srep34845
22. Lin N.Y.C., Homan K.A., Robinson S.S., Kolesky D.B., Duarte N., Moisan A., et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci U S A. 2019;116(12):5399–404. DOI: 10.1073/pnas.1815208116
23. Wang J., Wang C., Xu N., Liu Z.F., Pang D.W., Zhang Z.L. A virusinduced kidney disease model based on organ-on-a-chip: Pathogenesis exploration of virus-related renal dysfunctions. Biomaterials. 2019;219:119367. DOI: 10.1016/j.biomaterials.2019.119367
24. Ross E.J., Gordon E.R., Sothers H., Darji R., Baron O., Haithcock D., et al. Three dimensional modeling of biologically relevant fluid shear stress in human renal tubule cells mimics in vivo transcriptional profiles. Sci Rep. 2021;11:14053. DOI: 10.1038/s41598-021-93570-5
25. Musah S., Mammoto A., Ferrante T.C., Jeanty S.S.F., Hirano-Kobayashi M., Mammoto T., et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng. 2017;1:0069. DOI: 10.1038/s41551-017-0069
26. Roye Y., Bhattacharya R., Mou X., Zhou Y., Burt M.A., Musah S. A personalized glomerulus chip engineered from stem cell-derived epithelium and vascular endothelium. Micromachines (Basel). 2021;12(8):967. DOI: 10.3390/mi12080967
27. Tiong H.Y., Huang P., Xiong S., Li Y., Vathsala A., Zink D. Druginduced nephrotoxicity: clinical impact and preclinical in vitro models. Mol Pharm. 2014;11:1933–48. DOI: 10.1021/mp400720w
28. Petrosyan A., Cravedi P., Villani V., Angeletti A., Manrique J., Renieri A., et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat Commun. 2019;10: 3656. DOI: 10.1038/s41467-019-11577-z
29. Sekhoacha M., Riet K., Motloung P., Gumenku L., Adegoke A., Mashele S. Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules. 2022;27(17):5730. DOI: 10.3390/molecules27175730
30. Pomerantz M.M., Qiu X., Zhu Y., Takeda D.Y., Pan W., Baca S.C., et al. Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat Genet. 2020;52:790–9. DOI:10.1038/s41588-020-0664-8
31. Lamb L.E., Knudsen B.S., Miranti C.K. E-cadherin-mediated survival of androgen-receptor-expressing secretory prostate epithelial cells derived from a stratified in vitro differentiation model. J Cell Sci. 2010;123:266–76. DOI: 10.1242/jcs.054502
32. Al-Samadi A., Poor B., Tuomainen K., Liu V., Hyytiäinen A., Suleymanova I., et al. In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients. Exp Cell Res. 2019;383(2):111508. DOI: 10.1016/j.yexcr.2019.111508
33. Jiang L., Ivich F., Tahsin S., Tran M., Frank S.B., Miranti C.K., et al. Human stroma and epithelium co-culture in a microfluidic model of a human prostate gland. Biomicrofluidics. 2019;13(6):064116. DOI: 10.1063/1.5126714
34. Wagenlehner F.M.E., Bjerklund Johansen T.E., Cai T., Koves B., Kranz J., Pilatz A., et al. Epidemiology, definition and treatment of complicated urinary tract infections. Nat Rev Urol. 2020;17(10):586–600. DOI: 10.1038/s41585-020-0362-4
35. Del Piccolo N., Shirure V.S., Bi Y., Goedegebuure S.P., Gholami S., Hughes C.C.W., et al. Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev. 2021;175:113798. DOI: 10.1016/j.addr.2021.05.008
36. Sharma K., Dhar N., Thacker V.V., Simonet T.M., Signorino-Gelo F., Knott G.W., et al. Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. Elife. 2021;10:e66481. DOI: 10.7554/eLife.66481
37. Galateanu B., Hudita A., Biru E.I., Iovu H., Zaharia C., Simsensohn E., et al. Applications of polymers for organ-on-chip technology in urology. Polymers (Basel). 2022;14(9):1668. DOI: 10.3390/polym14091668
38. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–49. DOI: 10.3322/caac.21660
39. Zhu S., Zhu Z., Ma A.-H., Sonpavde G.P., Cheng F., Pan C. Preclinical models for bladder cancer research. Hematol Clin. 2021;35:613–32. DOI: 10.1016/j.hoc.2021.02.007
40. Fan W., Xiong Q., Ge Y., Liu T., Zeng S., Zhao J. Identifying the grade of bladder cancer cells using microfluidic chips based on impedance. Analyst. 2022;147(8):1722–9. DOI: 10.1039/d2an00026a
41. Liu P.F., Cao Y.W., Zhang S.D., Zhao Y., Liu X.G., Shi H.Q., et al. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Oncotarget. 2015;6(35):37695–705. DOI: 10.18632/oncotarget.6070
42. Xu X.-D., Shao S.-X., Cao Y.-W., Yang X.-C., Shi H.-Q., Wang Y.-L., et al. The study of energy metabolism in bladder cancer cells in co-culture conditions using a microfluidic chip. Int J Clin Exp Med. 2015;8:12327. PMID: 26550142
43. Imparato G., Urciuolo F., Netti P.A. Organ on chip technology to model cancer growth and metastasis. Bioengineering (Basel). 2022;9(1):28. DOI: 10.3390/bioengineering9010028
44. Shourabi A.Y., Kashaninejad N., Saidi M.S. An integrated microfluidic concentration gradient generator for mechanical stimulation and drug delivery. J Sci Adv Mater Devices. 2021;6:280–90. DOI: 10.1016/j.jsamd.2021.02.009
Review
For citations:
Vardikian A.G., Piatnitskaia S.V., Solntsev V.A., Shamsov B.I., Pavlov V.N. Organ-on-a-chip Technology in Urology. Creative surgery and oncology. 2023;13(4):311-319. (In Russ.) https://doi.org/10.24060/2076-3093-2023-13-4-311-319