Preview

Creative surgery and oncology

Advanced search

Organ-on-a-chip Technology in Urology

https://doi.org/10.24060/2076-3093-2023-13-4-311-319

Abstract

Organs-on-chips (OOC) refer to microfluidic devices used to create biomimetic systems of physiological organs. The system contains engineered or natural miniature tissues grown inside microfluidic chips. Organ-on-a-chip technology enables numerous human pathologies to be reproduced, since classical animal models may fail to adequately predict the therapeutic response in humans. This technology can be an intermediate link in the animal-human research system. Moreover, in cancer studies, OOC simulate the three-dimensional hierarchical complexity of tumors in vivo and the tumor microenvironment, being an efficient and cost-effective solution for tumor growth studies and cancer drug screening. Organs-on-chips represent compact and easy-to-use microphysiological functional units simulating physical and biological processes in human body. This extends the possibility of preclinical studies, such as disease modeling or even the development of diagnostic devices. In this regard, the present study is aimed at reviewing the scientific literature in the field of microfluidic devices intended for use in urology and oncourology.

About the Authors

A. G. Vardikian
Bashkir State Medical University; Institute of Urology and Clinical Oncology, Bashkir State Medical University
Russian Federation

Andranik G. Vardikian — Postgraduate Student, Department of Urology with a Course of Advanced  Professional Education, Stem Cells Laborator

Ufa



S. V. Piatnitskaia
Bashkir State Medical University; Institute of Fundamental Medicine, Bashkir State Medical University
Russian Federation

Svetlana V. Piatnitskaia — Senior Research Assistant, Cell  Culture Laboratory, Department of Internal Diseases

Ufa



V. A. Solntsev
Institute of Fundamental Medicine, Bashkir State Medical University
Russian Federation

Vadim A. Solntsev — Medical Research Assistant, Cell  Culture Laboratory

Ufa



B. I. Shamsov
Bashkir State Medical University
Russian Federation

Bedil I. Shamsov — Postgraduate Student, Department of  Urology with a Course of Advanced Professional Education

Ufa



V. N. Pavlov
Bashkir State Medical University; Institute of Urology and Clinical Oncology, Bashkir State Medical University
Russian Federation

Valentin N. Pavlov — Dr. Sci (Med.), Prof., Academician  of the Russian Academy of Sciences, Department of  Urology with a Course of Advanced Professional Education

Ufa



References

1. Fabre K., Berridge B., Proctor W.R., Ralston S., Will Y., Baran S.W., et al. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. Lab Chip. 2020;20(6):1049–57. DOI: 10.1039/c9lc01168d

2. Park S.M., Eom S., Hong H., Yoon J., Lee S.J., Kim B.Ch., et al. Reconstruction of in vivo-like in vitro model: enabling technologies of microfluidic systems for dynamic biochemical/mechanical stimuli. Microelectron Eng. 2019;203–204:6–24. DOI: 10.1016/j.mee.2018.10.010

3. Wu Q., Liu J., Wang X., Feng L., Wu J., Zhu X., et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online. 2020;19(1):9. DOI: 10.1186/s12938-020-0752-0

4. Sun W., Luo Z., Lee J., Kim H., Lee K., Tebon P., et al. Organ-on-achip for cancer and immune organs modeling. Adv Healthc Mater. 2019;8:1801363. DOI: 10.1002/adhm.201801363

5. Trujillo-de Santiago G., Flores-Garza B.G., Tavares-Negrete J.A., LaraMayorga I.M., González-Gamboa I., Zhang Y.S., et al. The Tumor-onChip: recent advances in the development of microfluidic systems to recapitulate the physiology of solid tumors. Materials. 2019;12:2945. DOI: 10.3390/ma12182945

6. Vormann M.K., Gijzen L., Hutter S., Boot L., Nicolas A., van den Heuvel A., et al. Nephrotoxicity and kidney transport assessment on 3D perfused proximal tubules. AAPS J. 2018;20:90. DOI: 10.1208/s12248-018-0248-z

7. Kramlinger V.M., Dalvie D., Heck C.J.S., Kalgutkar A.S., O’Neill J., Su D., et al. Future of biotransformation science in the pharmaceutical industry. Drug Metab Dispos. 2022;50(3):258–67. DOI: 10.1124/dmd.121.000658

8. Lee S.J., Lee H.A. Trends in the development of human stem cellbased non-animal drug testing models. Korean J Physiol Pharmacol. 2020;24(6):441–52. DOI: 10.4196/kjpp.2020.24.6.441

9. Andersen M.L., Winter L.M.F. Animal models in biological and biomedical research — experimental and ethical concerns. An Acad Bras Cienc. 2019;91(suppl 1):e20170238. DOI: 10.1590/0001-3765201720170238

10. European Parliament [Internet]. [cited 2022 Feb 25]. Available from: https://www.Europarl.Europa.Eu/Plenary/En/Vod.Html?Mode=chapter&vodLanguage=EN&vodId=6ea360e5-0dd3-Decd-2a72-642c028c0a34&date=20210708#

11. Ma C., Peng Y., Li H., Chen W. Organ-on-a-Chip: a new paradigm for drug development. Trends Pharmacol Sci. 2021;42(2):119–33. DOI: 10.1016/j.tips.2020.11.009

12. Liu X., Fang J., Huang S., Wu X., Xie X., Wang J., et al. Tumor-on-aChip: from bioinspired design to biomedical application. Microsyst Nanoeng. 2021;7:50. DOI: 10.1038/s41378-021-00277-8

13. Ingber D.E. Developmentally inspired human “Organs on Chips”. Development. 2018;145(16):dev156125. DOI: 10.1242/dev.156125

14. Huh D., Matthews B.D., Mammoto A., Montoya-Zavala M., Hsin H.Y., Ingber D.E. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662–8. DOI: 10.1126/science.1188302

15. Paloschi V., Sabater-Lleal M., Middelkamp H., Vivas A., Johansson S., van der Meer A., et al. Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc Res. 2021;117(14):2742–54. DOI: 10.1093/cvr/cvab088

16. Ma L.-D., Wang Y.-T., Wang J.-R., Wu J.-L., Meng X.-S., Hu P., et al. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip. 2018;18:2547–62. DOI: 10.1039/c8lc00333e

17. Marrero D., Pujol-Vila F., Vera D., Gabriel G., Illa X., Elizalde-Torrent A., et al. Gut-on-a-chip: Mimicking and monitoring the human intestine. Biosens Bioelectron. 2021;181:113156. DOI: 10.1016/j.bios.2021.113156

18. Chou D.B., Frismantas V., Milton Y., David R., Pop-Damkov P., Ferguson D., et al. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat Biomed Eng. 2020;4(4):394–406. DOI: 10.1038/s41551-019-0495-z

19. Soo J.Y.-C., Jansen J., Masereeuw R., Little M.H. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol. 2018;14:378–93. DOI: 10.1038/s41581-018-0003-9

20. Lee J., Kim S. Kidney-on-a-Chip: a new technology for predicting drug efficacy, interactions, and drug-induced nephrotoxicity. Curr Drug Metab. 2018;19(7):577–83. DOI: 10.2174/1389200219666180309101844

21. Homan K.A., Kolesky D.B., Skylar-Scott M.A., Herrmann J., Obuobi H., Moisan A., et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep. 2016;6:34845. DOI: 10.1038/srep34845

22. Lin N.Y.C., Homan K.A., Robinson S.S., Kolesky D.B., Duarte N., Moisan A., et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci U S A. 2019;116(12):5399–404. DOI: 10.1073/pnas.1815208116

23. Wang J., Wang C., Xu N., Liu Z.F., Pang D.W., Zhang Z.L. A virusinduced kidney disease model based on organ-on-a-chip: Pathogenesis exploration of virus-related renal dysfunctions. Biomaterials. 2019;219:119367. DOI: 10.1016/j.biomaterials.2019.119367

24. Ross E.J., Gordon E.R., Sothers H., Darji R., Baron O., Haithcock D., et al. Three dimensional modeling of biologically relevant fluid shear stress in human renal tubule cells mimics in vivo transcriptional profiles. Sci Rep. 2021;11:14053. DOI: 10.1038/s41598-021-93570-5

25. Musah S., Mammoto A., Ferrante T.C., Jeanty S.S.F., Hirano-Kobayashi M., Mammoto T., et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng. 2017;1:0069. DOI: 10.1038/s41551-017-0069

26. Roye Y., Bhattacharya R., Mou X., Zhou Y., Burt M.A., Musah S. A personalized glomerulus chip engineered from stem cell-derived epithelium and vascular endothelium. Micromachines (Basel). 2021;12(8):967. DOI: 10.3390/mi12080967

27. Tiong H.Y., Huang P., Xiong S., Li Y., Vathsala A., Zink D. Druginduced nephrotoxicity: clinical impact and preclinical in vitro models. Mol Pharm. 2014;11:1933–48. DOI: 10.1021/mp400720w

28. Petrosyan A., Cravedi P., Villani V., Angeletti A., Manrique J., Renieri A., et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat Commun. 2019;10: 3656. DOI: 10.1038/s41467-019-11577-z

29. Sekhoacha M., Riet K., Motloung P., Gumenku L., Adegoke A., Mashele S. Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules. 2022;27(17):5730. DOI: 10.3390/molecules27175730

30. Pomerantz M.M., Qiu X., Zhu Y., Takeda D.Y., Pan W., Baca S.C., et al. Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat Genet. 2020;52:790–9. DOI:10.1038/s41588-020-0664-8

31. Lamb L.E., Knudsen B.S., Miranti C.K. E-cadherin-mediated survival of androgen-receptor-expressing secretory prostate epithelial cells derived from a stratified in vitro differentiation model. J Cell Sci. 2010;123:266–76. DOI: 10.1242/jcs.054502

32. Al-Samadi A., Poor B., Tuomainen K., Liu V., Hyytiäinen A., Suleymanova I., et al. In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients. Exp Cell Res. 2019;383(2):111508. DOI: 10.1016/j.yexcr.2019.111508

33. Jiang L., Ivich F., Tahsin S., Tran M., Frank S.B., Miranti C.K., et al. Human stroma and epithelium co-culture in a microfluidic model of a human prostate gland. Biomicrofluidics. 2019;13(6):064116. DOI: 10.1063/1.5126714

34. Wagenlehner F.M.E., Bjerklund Johansen T.E., Cai T., Koves B., Kranz J., Pilatz A., et al. Epidemiology, definition and treatment of complicated urinary tract infections. Nat Rev Urol. 2020;17(10):586–600. DOI: 10.1038/s41585-020-0362-4

35. Del Piccolo N., Shirure V.S., Bi Y., Goedegebuure S.P., Gholami S., Hughes C.C.W., et al. Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev. 2021;175:113798. DOI: 10.1016/j.addr.2021.05.008

36. Sharma K., Dhar N., Thacker V.V., Simonet T.M., Signorino-Gelo F., Knott G.W., et al. Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. Elife. 2021;10:e66481. DOI: 10.7554/eLife.66481

37. Galateanu B., Hudita A., Biru E.I., Iovu H., Zaharia C., Simsensohn E., et al. Applications of polymers for organ-on-chip technology in urology. Polymers (Basel). 2022;14(9):1668. DOI: 10.3390/polym14091668

38. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–49. DOI: 10.3322/caac.21660

39. Zhu S., Zhu Z., Ma A.-H., Sonpavde G.P., Cheng F., Pan C. Preclinical models for bladder cancer research. Hematol Clin. 2021;35:613–32. DOI: 10.1016/j.hoc.2021.02.007

40. Fan W., Xiong Q., Ge Y., Liu T., Zeng S., Zhao J. Identifying the grade of bladder cancer cells using microfluidic chips based on impedance. Analyst. 2022;147(8):1722–9. DOI: 10.1039/d2an00026a

41. Liu P.F., Cao Y.W., Zhang S.D., Zhao Y., Liu X.G., Shi H.Q., et al. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Oncotarget. 2015;6(35):37695–705. DOI: 10.18632/oncotarget.6070

42. Xu X.-D., Shao S.-X., Cao Y.-W., Yang X.-C., Shi H.-Q., Wang Y.-L., et al. The study of energy metabolism in bladder cancer cells in co-culture conditions using a microfluidic chip. Int J Clin Exp Med. 2015;8:12327. PMID: 26550142

43. Imparato G., Urciuolo F., Netti P.A. Organ on chip technology to model cancer growth and metastasis. Bioengineering (Basel). 2022;9(1):28. DOI: 10.3390/bioengineering9010028

44. Shourabi A.Y., Kashaninejad N., Saidi M.S. An integrated microfluidic concentration gradient generator for mechanical stimulation and drug delivery. J Sci Adv Mater Devices. 2021;6:280–90. DOI: 10.1016/j.jsamd.2021.02.009


Review

For citations:


Vardikian A.G., Piatnitskaia S.V., Solntsev V.A., Shamsov B.I., Pavlov V.N. Organ-on-a-chip Technology in Urology. Creative surgery and oncology. 2023;13(4):311-319. (In Russ.) https://doi.org/10.24060/2076-3093-2023-13-4-311-319

Views: 882


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)