Preview

Creative surgery and oncology

Advanced search

Role of TRAP1 Protein in the Development and Progression of Glioblastoma

https://doi.org/10.24060/2076-3093-2024-14-4-369-381

Abstract

Glioblastoma is recognized as the most aggressive type of primary brain tumor. Despite recent advances in understanding the molecular mechanisms involved in the biology of glioblastoma, patient survival rates remain disappointing, primarily due to the lack of effective treatment options. Tumor necrosis factor receptor-associated protein 1 (TRAP1), a member of the heat shock protein 90 (Hsp90) family, refers to a protein predominantly localized in the mitochondria that regulates both cellular metabolic reprogramming and mitochondrial apoptosis. This protein is highly expressed in several types of tumors, including colorectal cancer, breast cancer, prostate cancer, and lung cancer, and is often associated with drug resistance. However, TRAP1 is also downregulated in certain cancers such as ovarian cancer, bladder cancer, and renal cancer, where its lower expression correlates with poorer prognoses and chemoresistance. The role of TRAP1 lies in enhancing or suppressing oxidative phosphorylation, with the impact of such regulation on tumor development and progression being a matter of ongoing debate. These observations prompt further investigation into the mechanisms responsible for the dual role of TRAP1 as both an oncogene and a tumor suppressor in specific types of tumors, particularly glioblastoma. The present study reviews the role of TRAP1 in the development and progression of glioblastoma and discusses the potential of targeting TRAP1 as a novel therapeutic approach against tumors.

About the Authors

I. F. Gareev
Central Research Laboratory, Bashkir State Medical University; Pirogov Russian National Research Medical University
Russian Federation

Ilgiz F. Gareev — Senior Researcher

Ufa, Moscow



A. S. Yasinskaya
Clinical Emergency Hospital
Russian Federation

Anna S. Yasinskaya — Early Medical Rehabilitation Unit

Ufa



S. A. Roumiantsev
Pirogov Russian National Research Medical University; National Medical Endocrinology Research Centre
Russian Federation

Sergey A. Roumiantsev Dr. Sci. (Med.), Prof., Corresponding Member of the Russian Academy of Sciences

Moscow



A. A. Bukhvostov
Pirogov Russian National Research Medical University
Russian Federation

Alexander A. Bukhvostov — Cand. Sci. (Biol.), Assoc. Prof., Department of Medical Nanobiotechnology, Faculty of Biomedical

Moscow



References

1. Lan Z., Li X., Zhang X. Glioblastoma: An Update in Pathology, Molecular Mechanisms and Biomarkers. Int j mol sci. 2024;25(5):3040. DOI: 10.3390/ijms25053040

2. Read R.D., Tapp Z.M., Rajappa P., Hambardzumyan D. Glioblastoma microenvironment-from biology to therapy. Genes dev. 2024;38(9–10):360–79. DOI: 10.1101/gad.351427.123

3. Masgras I., Laquatra C., Cannino G., Serapian S.A., Colombo G., et al. The molecular chaperone TRAP1 in cancer: From the basics of biology to pharmacological targeting. Semin cancer biol. 2021;76:45–53. DOI: 10.1016/j.semcancer.2021.07.002

4. Kang S., Kang B.H. Structure, Function, and Inhibitors of the Mitochondrial Chaperone TRAP1. J med chem. 2022;65(24):16155–72. DOI: 10.1021/acs.jmedchem.2c01633

5. Yang J., Shay C., Saba N.F., Teng Y. Cancer metabolism and carcinogenesis. Exp hematol oncol. 2024;13(1):10. DOI: 10.1186/s40164-024-00482-x

6. Li X.T., Li Y.S., Shi Z.Y., Guo X.L. New insights into molecular chaperone TRAP1 as a feasible target for future cancer treatments. Life sci. 2020;254:117737. DOI: 10.1016/j.lfs.2020.117737

7. Albakova Z., Mangasarova Y., Albakov A., Gorenkova L. HSP70 and HSP90 in Cancer: Cytosolic, Endoplasmic Reticulum and Mitochondrial Chaperones of Tumorigenesis. Front Oncol. 2022;12:829520. DOI: 10.3389/fonc.2022.829520. Erratum in: Front Oncol. 2023;13:1210051. DOI: 10.3389/fonc.2023.1210051

8. Kontomanolis E.N., Koutras A., Syllaios A., Schizas D., Mastoraki A., Garmpis N., et al. Role of Oncogenes and Tumor-suppressor Genes in Carcinogenesis: A Review. Anticancer res. 2020;40(11):6009–15. DOI: 10.21873/anticanres.14622

9. Hnisz D., Weintraub A.S., Day D.S., Valton A.L., Bak R.O., Li CH., et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science. 2016;351(6280):1454–8. DOI: 10.1126/science.aad9024

10. Brown G. Oncogenes, Proto-Oncogenes, and Lineage Restriction of Cancer Stem Cells. Int J Mol Sci. 2021;22(18):9667. DOI: 10.3390/ijms22189667

11. Hui-Ying X., Da-Hong Z., Li-Juan J., Xiao-Jie L. Anticancer Opportunity Created by Loss of Tumor Suppressor Genes. Technol cancer res treat. 2016;15(6):729–31. DOI: 10.1177/1533034615604798

12. Matassa D.S., Agliarulo I., Avolio R., Landriscina M., Esposito F. TRAP1 Regulation of Cancer Metabolism: Dual Role as Oncogene or Tumor Suppressor. Genes (Basel). 2018;9(4):195. DOI: 10.3390/genes9040195

13. Lisanti S., Garlick D.S., Bryant K.G., Tavecchio M., Mills G.B., Lu Y., et al. Transgenic Expression of the Mitochondrial Chaperone TNFR-associated Protein 1 (TRAP1) Accelerates Prostate Cancer Development. J biol chem. 2016;291(48):25247–54. DOI: 10.1074/jbc.M116.745950

14. Pak M.G., Koh H.J., Roh M.S. Clinicopathologic significance of TRAP1 expression in colorectal cancer: a large scale study of human colorectal adenocarcinoma tissues. Diagn pathol. 2017;12(1):6. DOI: 10.1186/s13000-017-0598-3

15. Zhang B., Wang J., Huang Z., Wei P., Liu Y., Hao J., et al. Aberrantly upregulated TRAP1 is required for tumorigenesis of breast cancer. Oncotarget. 2015;6(42):44495–508. DOI: 10.18632/oncotarget.6252

16. Vartholomaiou E., Madon-Simon M., Hagmann S., Mühlebach G., Wurst W., Floss T., et al. Cytosolic Hsp90α and its mitochondrial isoform Trap1 are differentially required in a breast cancer model. Oncotarget. 2017;8(11):17428–42. DOI: 10.18632/oncotarget.15659

17. Maddalena F., Sisinni L., Lettini G., Condelli V., Matassa D.S., Piscazzi A., et al. Resistance to paclitxel in breast carcinoma cells requires a quality control of mitochondrial antiapoptotic proteins by TRAP1. Mol oncol. 2013;7(5):895–906. DOI: 10.1016/j.molonc.2013.04.009

18. Condelli V., Piscazzi A., Sisinni L., Matassa D.S., Maddalena F., et al. TRAP1 is involved in BRAF regulation and downstream attenuation of ERK phosphorylation and cell-cycle progression: a novel target for BRAF-mutated colorectal tumors. Cancer Res. 2014;74(22):6693–704. DOI: 10.1158/0008-5472.CAN-14-1331

19. Masgras I., Ciscato F., Brunati A.M., Tibaldi E., Indraccolo S., Curtarello M., et al. Absence of Neurofibromin Induces an Oncogenic Metabolic Switch via Mitochondrial ERK-Mediated Phosphorylation of the Chaperone TRAP1. Cell Rep. 2017;18(3):659–72. DOI: 10.1016/j.celrep.2016.12.056

20. Bruno G., Li Bergolis V., Piscazzi A., Crispo F., Condelli V., Zoppoli P., et al. TRAP1 regulates the response of colorectal cancer cells to hypoxia and inhibits ribosome biogenesis under conditions of oxygen deprivation. Int J Oncol. 2022;60(6):79. DOI: 10.3892/ijo.2022.5369

21. Serwetnyk M.A., Blagg B.S.J. The disruption of protein-protein interactions with co-chaperones and client substrates as a strategy towards Hsp90 inhibition. Acta pharm sin B. 2021;11(6):1446–68. DOI: 10.1016/j.apsb.2020.11.015

22. Rasola A., Neckers L., Picard D. Mitochondrial oxidative phosphorylation TRAP(1)ped in tumor cells. Trends Cell Biol. 2014;24(8):455–63. DOI: 10.1016/j.tcb.2014.03.005

23. Tsai H.Y., Bronner M.P., March J.K., Valentine J.F., Shroyer N.F., Lai LA., et al. Metabolic targeting of NRF2 potentiates the efficacy of the TRAP1 inhibitor G-TPP through reduction of ROS detoxification in colorectal cancer. Cancer Lett. 2022;549:215915. DOI: 10.1016/j.canlet.2022.215915

24. Zhang X., Dong Y., Gao M., Hao M., Ren H., Guo L., et al. Knockdown of TRAP1 promotes cisplatin-induced apoptosis by promoting the ROS-dependent mitochondrial dysfunction in lung cancer cells. Mol Cell Biochem. 2021;476(2):1075–82. DOI: 10.1007/s11010-020-03973-7

25. Jin Y., Murata H., Sakaguchi M., Kataoka K., Watanabe M., Nasu Y., et al. Partial sensitization of human bladder cancer cells to a gene-therapeutic adenovirus carrying REIC/Dkk-3 by downregulation of BRPK/PINK1. Oncol Rep. 2012;27(3):695–9. DOI: 10.3892/or.2011.1543

26. Annunziata C., Buonaguro L., Buonaguro F.M., Tornesello M.L. Characterization of the human papillomavirus (HPV) integration sites into genital cancers. Pathol oncol res. 2012;18(4):803–8. DOI: 10.1007/s12253-012-9507-y

27. Nicolas E., Demidova E.V., Iqbal W., Serebriiskii I.G., Vlasenkova R., Ghatalia P., et al. Interaction of germline variants in a family with a history of early-onset clear cell renal cell carcinoma. Mol Genet Genomic Med. 2019;7(3):e556. DOI: 10.1002/mgg3.556

28. Aust S., Bachmayr-Heyda A., Pateisky P., Tong D., Darb-Esfahani S., Denkert C., et al. Role of TRAP1 and estrogen receptor alpha in patients with ovarian cancer -a study of the OVCAD consortium. Mol Cancer. 2012;11:69. DOI: 10.1186/1476-4598-11-69

29. Amoroso M.R., Matassa D.S., Agliarulo I., Avolio R., Lu H., Sisinni L., et al. TRAP1 downregulation in human ovarian cancer enhances invasion and epithelial-mesenchymal transition. Cell Death Dis. 2016;7(12):e2522. DOI: 10.1038/cddis.2016.400

30. Ye L., Jiang Y., Zhang M. Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine growth factor rev. 2022;68:81–92. DOI: 10.1016/j.cytogfr.2022.11.001

31. Park J.H., Pyun W.Y., Park H.W. Cancer Metabolism: Phenotype, Signaling and Therapeutic Targets. Cells. 2020;9(10):2308. DOI: 10.3390/cells9102308

32. Lu E., Gareev I., Yuan C., Liang Y., Sun J., Chen X., et al. The Mechanisms of Current Platinum Anticancer Drug Resistance in the Glioma. Curr pharm des. 2022;28(23):1863–9. DOI: 10.2174/1381612828666220607105746

33. Beylerli O., Sufianova G., Shumadalova A., Zhang D., Gareev I. MicroRNAs-mediated regulation of glucose transporter (GLUT) expression in glioblastoma. Noncoding RNA Res. 2022;7(4):205–11. DOI: 10.1016/j.ncrna.2022.09.001

34. Gareev I., Beylerli O., Liang Y., Xiang H., Liu C., Xu X., et al. The Role of MicroRNAs in Therapeutic Resistance of Malignant Primary Brain Tumors. Front cell dev biol. 2021;9:740303. DOI: 10.3389/fcell.2021.740303

35. Zhang R., Wang C., Zheng X., Li S., Zhang W., Kang Z., et al. Warburg effect-related risk scoring model to assess clinical significance and immunity characteristics of glioblastoma. Cancer Med. 2023;12(21):20639–54. DOI: 10.1002/cam4.6627

36. Wengert L.A., Backe S.J., Bourboulia D., Mollapour M., Woodford M.R. TRAP1 Chaperones the Metabolic Switch in Cancer. Biomolecules. 2022;12(6):786. DOI: 10.3390/biom12060786

37. Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion. 2020;50:42–50. DOI: 10.1016/j.mito.2019.09.011

38. Wu J., Liu Y., Cho K., Dong X., Teng L., Han D., et al. Downregulation of TRAP1 sensitizes glioblastoma cells to temozolomide chemotherapy through regulating metabolic reprogramming. Neuroreport. 2016;27(3):136–44. DOI: 10.1097/WNR.0000000000000513

39. Luo Q., Wang J., Zhao W., Peng Z., Liu X., Li B., et al. Vasculogenic mimicry in carcinogenesis and clinical applications. J hematol oncol. 2020;13(1):19. DOI: 10.1186/s13045-020-00858-6

40. Wei X., Chen Y., Jiang X., Peng M., Liu Y., Mo Y., et al. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer. 2021;20(1):7. DOI: 10.1186/s12943-020-01288-1

41. Calinescu A.A., Kauss M.C., Sultan Z., Al-Holou W.N., O’Shea S.K. Stem cells for the treatment of glioblastoma: a 20-year perspective. CNS Oncol. 2021;10(2):CNS73. DOI: 10.2217/cns-2020-0026

42. Dome A., Dymova M., Richter V., Stepanov G. Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma. Int j mol sci. 2022;23(16):9272. DOI: 10.3390/ijms23169272

43. Li W., Xu X. Advances in mitophagy and mitochondrial apoptosis pathway-related drugs in glioblastoma treatment. Front Pharmacol. 2023;14:1211719. DOI: 10.3389/fphar.2023.1211719

44. Adebayo M., Singh S., Singh A.P., Dasgupta S. Mitochondrial fusion and fission: The fine-tune balance for cellular homeostasis. FASEB J. 2021;35(6):e21620. DOI: 10.1096/fj.202100067R

45. Bock F.J., Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85–100. DOI: 10.1038/s41580-019-0173-8

46. Matassa D.S., Amoroso M.R., Maddalena F., Landriscina M., Esposito F. New insights into TRAP1 pathway. Am j cancer res. 2012;2(2):235–48.

47. Im C.N., Lee J.S., Zheng Y., Seo J.S. Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J cell biochem. 2007;100(2):474–86. DOI: 10.1002/jcb.21064

48. Liu J., Ren Z., Yang L., Zhu L., Li Y., Bie C et al. The NSUN5-FTH1/FTL pathway mediates ferroptosis in bone marrow-derived mesenchymal stem cells. Cell Death Discov. 2022;8(1):99. DOI: 10.1038/s41420-022-00902-z

49. Basit F., van Oppen L.M., Schöckel L., Bossenbroek H.M., van Emst-de Vries S.E., Hermeling J.C., et al. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis. 2017;8(3):e2716. DOI: 10.1038/cddis.2017.133

50. Yin H., Deng Z., Li X., Li Y., Yin W., Zhao G., et al. Down-regulation of STIP1 regulate apoptosis and invasion of glioma cells via TRAP1/AKT signaling pathway. Cancer Genet. 2019;237:1–9. DOI: 10.1016/j.cancergen.2019.05.006

51. Zhang S., Shao J., Su F. Prognostic significance of STIP1 expression in human cancer: A meta-analysis. Clin Chim Acta. 2018;486:168–76. DOI: 10.1016/j.cca.2018.07.037

52. Lin C.Y., Chen S.H., Tsai C.L., Tang Y.H., Wu K.Y., Chao A. Intracellular targeting of STIP1 inhibits human cancer cell line growth. Transl cancer res. 2021;10(3):1313–23. DOI: 10.21037/tcr-20-3333

53. Cheng F., Zhao J., Fooksa M., Zhao Z. A network-based drug repositioning infrastructure for precision cancer medicine through targeting significantly mutated genes in the human cancer genomes. J am med inform assoc. 2016;23(4):681–91. DOI: 10.1093/jamia/ocw007

54. Zakrzewski W., Dobrzyński M., Szymonowicz M., Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68. DOI: 10.1186/s13287-019-1165-5

55. Lytle N.K., Barber A.G., Reya T. Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer. 2018;18(11):669–80. DOI: 10.1038/s41568-018-0056-x

56. Sloan A.R., Silver D.J., Kint S., Gallo M., Lathia J.D. Cancer stem cell hypothesis 2.0 in glioblastoma: Where are we now and where are we going? Neuro oncol. 2024;26(5):785–95. DOI: 10.1093/neuonc/noae011

57. Ramar V., Guo S., Hudson B., Liu M. Progress in Glioma Stem Cell Research. Cancers (Basel). 2023;16(1):102. DOI: 10.3390/cancers16010102

58. Lettini G., Sisinni L., Condelli V., Matassa D.S., Simeon V., Maddalena F., et al. TRAP1 regulates stemness through Wnt/β-catenin pathway in human colorectal carcinoma. Cell Death Differ. 2016;23(11):1792–803. DOI: 10.1038/cdd.2016.67

59. Amoroso M.R., Matassa D.S., Agliarulo I., Avolio R., Maddalena F., et al. Stress-Adaptive Response in Ovarian Cancer Drug Resistance: Role of TRAP1 in Oxidative Metabolism-Driven Inflammation. Adv Protein Chem Struct Biol. 2017;108:163–98. DOI: 10.1016/bs.apcsb.2017.01.004

60. Matassa D.S., Amoroso M.R., Lu H., Avolio R., Arzeni D., Procaccini C., et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54. DOI: 10.1038/cdd.2016.39

61. Wang N., Zhu P., Huang R., Sun L., Dong D., Gao Y. Suppressing TRAP1 sensitizes glioblastoma multiforme cells to temozolomide. Exp ther med. 2021;22(5):1246. DOI: 10.3892/etm.2021.10681

62. Park H.K., Hong J.H., Oh Y.T., Kim S.S., Yin J., Lee A.J., et al. Interplay between TRAP1 and Sirtuin-3 Modulates Mitochondrial Respiration and Oxidative Stress to Maintain Stemness of Glioma Stem Cells. Cancer Res. 2019;79(7):1369–82. DOI: 10.1158/0008-5472.CAN-18-2558

63. Lin W., Huang L., Li Y., Fang B., Li G., Chen L., et al. Mesenchymal Stem Cells and Cancer: Clinical Challenges and Opportunities. Biomed Res Int. 2019;2019:2820853. DOI: 10.1155/2019/2820853

64. Xing Z., Jiang X., Chen Y., Wang T., Li X., Wei X., et al. Glutamine deprivation in glioblastoma stem cells triggers autophagic SIRT3 degradation to epigenetically restrict CD133 expression and stemness. Apoptosis. 2024;29(9–10):1619–31. DOI: 10.1007/s10495-024-02003-x

65. Merfeld T., Peng S., Keegan B.M., Crowley V.M., Brackett C.M., Gutierrez A., et al. Elucidation of novel TRAP1-Selective inhibitors that regulate mitochondrial processes. Eur J Med Chem. 2023;258:115531. DOI: 10.1016/j.ejmech.2023.115531

66. Seo Y.H. Organelle-specific Hsp90 inhibitors. Arch Pharm Res. 2015;38(9):1582–90. DOI: 10.1007/s12272-015-0636-1

67. Wei S., Yin D., Yu S., Lin X., Savani M.R., Du K., et al. Antitumor Activity of a Mitochondrial-Targeted HSP90 Inhibitor in Gliomas. Clin Cancer Res. 2022;28(10):2180–95. DOI: 10.1158/1078-0432.CCR-21-0833

68. Kang B.H., Siegelin M.D., Plescia J., Raskett C.M., Garlick D.S., Dohi T., et al. Preclinical characterization of mitochondria-targeted small molecule hsp90 inhibitors, gamitrinibs, in advanced prostate cancer. Clin cancer res. 2010;16(19):4779–88. DOI: 10.1158/1078-0432.CCR-10-1818

69. Caino M.C., Altieri D.C. Molecular Pathways: Mitochondrial Reprogramming in Tumor Progression and Therapy. Clin cancer res. 2016;22(3):540–5. DOI: 10.1158/1078-0432.CCR-15-0460

70. Soga S., Akinaga S., Shiotsu Y. Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development. Curr Pharm Des. 2013;19(3):366–76. DOI: 10.2174/138161213804143617

71. Nguyen T.T.T., Zhang Y., Shang E., Shu C., Quinzii C.M., Westhoff M.A., et al. Inhibition of HDAC1/2 Along with TRAP1 Causes Synthetic Lethality in Glioblastoma Model Systems. Cells. 2020;9(7):1661. DOI: 10.3390/cells9071661


Review

For citations:


Gareev I.F., Yasinskaya A.S., Roumiantsev S.A., Bukhvostov A.A. Role of TRAP1 Protein in the Development and Progression of Glioblastoma. Creative surgery and oncology. 2024;14(4):369-381. (In Russ.) https://doi.org/10.24060/2076-3093-2024-14-4-369-381

Views: 446


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)