Biopolymer crosslinking: Application and prospects
https://doi.org/10.24060/2076-3093-2025-15-1-50-56
Abstract
Crosslinking is a method of linking together high-molecular compounds by forming new chemical cross linkages inside and between macrochains. At the same time, various agents can act as cross linkers, i.e., chemical compounds, ultraviolet radiation, etc. Crosslinking of biotissues is known for improving their mechanical strength, increasing structural density, and reducing bioscaffold permeability. This review aims to characterize possible applications of cross-linking technology in various branches of medicine, i.e., ophthalmology, traumatology, urology, gastroenterology, oncology, bioengineering, and others. A review of domestic and foreign publications was carried out using the database and resources of search systems of scientific electronic libraries such as PubMed, elibrary.ru, Google Scholar, Science Direct, and the library stock of Bashkir State Medical University for the period from 1994 to 2023. The study of available literature sources makes it possible to conclude that the method of ultraviolet crosslinking is currently widely used in ophthalmology, while various modifications of crosslinking have prospects in medicine and related industries and can become the basis for the creation of bioengineered products and original medical technologies aimed at improving the effectiveness of treatment of various human diseases.
About the Authors
M. M. BikbovRussian Federation
Mukharram M. Bikbov — Dr. Sci. (Med.), Prof., Department of Ophthalmology with a course of Optical Instrument Making
Ufa
I. R. Kabirov
Russian Federation
Ildar R. Kabirov — Cand. Sci. (Med.), Department of Urology and Oncology
Ufa
A. R. Khalimov
Russian Federation
Azat R. Khalimov — Dr. Sci. (Biol.), Scientific and Innovation Department
Ufa
A. D. Neryakhin
Russian Federation
Alexander D. Neryakhin — 5th year Student, Faculty of Pediatrics
Ufa
P. N. Shmelkova
Russian Federation
Polina N. Shmelkova — 5th year Student, Faculty of Pediatrics
Ufa
D. Kh. Gainullina
Russian Federation
Diana Kh. Gainullina — 5th year Student, Faculty of Pediatrics
Ufa
L. S. Gumerova
Russian Federation
Leila S. Gumerova — 5th year Student, Faculty of Pediatrics
Ufa
A. A. Tukhbatullin
Russian Federation
Albert A. Tukhbatullin — 5th year Student, Faculty of Pediatrics
Ufa
A. A. Akhunzyanov
Russian Federation
Azat A. Akhunzyanov — 5th year Student, Faculty of Pediatrics
Ufa
E. A. Nadezhdina
Russian Federation
Ekaterina A. Nadezhdina — 6th year Student
Ufa
References
1. Nashchekina Yu.A., Lukonina O.A., Mikhailova N.A. Chemical cross-linking agents for collagen: interaction mechanisms and perspectives for regenerative medicine. Tsitologiya. 2020;62(7):459–72 (In Russ.). DOI: 10.31857/S0041377120070044
2. Raiskup F., Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. Ocul Surf. 2013;11(2):65–74. DOI: 10.1016/j.jtos.2013.01.002
3. Phillips H. Cross-linkage formation in keratins. Nature. 1936;138(327):121–2. DOI: 10.1038/138327a0
4. Zigman S., Paxhia T., Waldron W. Effects of near-UV radiation on the protein of the grey squirrel lens. Curr Eye Res. 1988;7(6):531–7. DOI: 10.3109/02713688809031808
5. Kato Y., Uchida K., Kawakishi S. Aggregation of collagen exposed to UVA in the presence of riboflavin: a plausible role of tyrosine modification. Photochem Photobiol. 1994;59(3):343–9. DOI: 10.1111/j.1751-1097.1994.tb05045.x
6. Spoerl E., Huhle M., Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66:97–103. DOI: 10.1006/exer.1997.0410
7. Wollensak G., Spoerl E., Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am. J. Ophthalmol. 2003;135(5):620–7. DOI: 10.1016/s0002-9394(02)02220-1
8. Seyedian M.A., Aliakbari S., Miraftab M., Hashemi H., Asgari S., Khabazkhoob M. Corneal collagen cross-linking in the treatment of progressive keratoconus: a randomized controlled contralateral eye study. Middle East Afr J Ophthalmol. 2015;22(3):340–5. DOI: 10.4103/0974-9233.159755
9. Bikbov M.M., Bikbova G.M. Corneal ectasia (pathogenesis, pathomorphology, clinic, diagnosis, treatment). Moscow; 2011 (In Russ.).
10. Bikbov M.M., Shevchuk N.E., Khalimov A.R. Effect of UV crosslinking on lacrimal fluid cytokine levels in patients with keratectasias. Cytokines and Inflammation. 2015;14(2):54–7 (In Russ.).
11. Bikbov M.M., Khalimov A.R., Usubov E.L. Ultraviolet Corneal Crosslinking. Annals of the Russian Academy of Medical Sciences. 2016;71(3):224–32 (In Russ.). DOI: 10.15690/vramn562
12. Bikbov M.M., Shevchuk N.E., Khalimov A.R., Bikbova G.M. Dynamics of riboflavin level in aqueous humour of anterior chamber of experimental animals under standard stroma saturation by ultraviolet corneal cross-linking solutions. Russian Annals of Ophthalmology. 2016;132(6):29–35 (In Russ.). DOI: 10.17116/oftalma2016132629-35
13. Bikbov M.M., Surkova V.K., Khalimov A.R., Usubov E.L. Results of corneal crosslinking for pellucid marginal corneal degeneration. Russian Annals of Ophthalmology. 2017;133(3):58–66 (In Russ.). DOI: 10.17116/oftalma2017133358-64
14. Zigman S., Paxhia T., Waldron W. Effects of near-UV radiation on the protein of the grey squirrel lens. Curr Eye Res. 1988;7(6):531–7. DOI: 10.3109/02713688809031808
15. Dodda J.M., Azar M.G., Sadiku R. Crosslinking trends in multicomponent hydrogels for biomedical applications. Macromol Biosci. 2021;21(12):e2100232. DOI: 10.1002/mabi.202100232
16. Gu H., He L., Liu L., Jin Y.C. Construction of dermal skeleton by double cross-linking with glutaraldehyde and ultraviolet radiation. Zhonghua Shao Shang Za Zhi. 2008;24(2):114–7. PMID: 18785411
17. Saito M., Marumo K. Effects of collagen crosslinking on bone material properties in health and disease. Calcif Tissue Int. 2015;97(3):242–61. DOI: 10.1007/s00223-015-9985-5
18. Cornette P., Jaabar I.L., Dupres V., Werthel J.D., Berenbaum F., Houard X., et al. Impact of collagen crosslinking on dislocated human shoulder capsules-effect on structural and mechanical properties. Int J Mol Sci. 2022;23(4):2297. DOI: 10.3390/ijms23042297
19. Shweta A., Pahuja S. Pharamaceutical relevance of cross-linked chitosan in microparticulate drug delivery. International Research Journal of Pharmacy. 2013;4:45–51.
20. Ruixue L., Yang S., Zhengwei C., Yang L., Jian S., Wei B., et al. Highly bioactive peptide-HA photo-crosslinking hydrogel for sustained promoting bone regeneration. Chem Engin J. 2021;415:129015. DOI: 10.1016/j.cej.2021.129015
21. Capanema N.S.V., Mansur A.A.P., Carvalho S.M., Carvalho I.C., Chagas P., de Oliveira L.C.A., et al. Bioengineered carboxymethyl cellulose-doxorubicin prodrug hydrogels for topical chemotherapy of melanoma skin cancer. Carbohydr Polym. 2018;195:401–12. DOI: 10.1016/j.carbpol.2018.04.105
22. Zhao J., Zhu Y., Ye C., Chen Y., Wang Sh., Zou D., et al. Photothermal transforming agent and chemotherapeutic co-loaded electrospun nanofibers for tumor treatment. Int J Nanomedicine. 2019;14:3893–909. DOI: 10.2147/IJN.S202876
23. Ma H., Peng Y., Zhang S., Zhang Y., Min P. Effects and progress of photo-crosslinking hydrogels in wound healing improvement. Gels. 2022;8(10):609. DOI: 10.3390/gels8100609
24. Zou C.Y., Lei X.X., Hu J.J., Jiang Y.L., Li Q.J., Song Y.T., et al. Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing. Bioact Mater. 2022;16:388–402. DOI: 10.1016/j.bioactmat.2022.02.034
25. Mao H., Zhao S., He Y., Feng M., Wu L., He Y., et al. Multifunctional polysaccharide hydrogels for skin wound healing prepared by photoinitiator-free crosslinking. Carbohydr Polym. 2022;285:119254. DOI: 10.1016/j.carbpol.2022.119254
26. Wang J., Kong L., Gafur A., Peng X., Kristi N., Xu J., et al. Photooxidation crosslinking to recover residual stress in decellularized blood vessel. Regen Biomater. 2021;8(2):rbaa058. DOI: 10.1093/rb/rbaa058. PMID: 33738112
27. Schneider K.H., Rohringer S., Kapeller B., Grasl C., Kiss H., Heber S., et al. Riboflavin-mediated photooxidation to improve the characteristics of decellularized human arterial small diameter vascular grafts. Acta Biomater. 2020;116:246–58. DOI: 10.1016/j.actbio.2020.08.037. PMID: 32871281
28. Munger K.A., Downey T.M., Haberer B., Pohlson K., Marshall L.L., Utecht R.E. A novel photochemical cross-linking technology to improve luminal gain, vessel compliance, and buckling post-angioplasty in porcine arteries. J Biomed Mater Res B Appl Biomater. 2016;104(2):375–84. DOI: 10.1002/jbm.b.33373. PMID: 25823876
29. Wang X., Ma B., Chang J. Preparation of decellularized vascular matrix by co-crosslinking of procyanidins and glutaraldehyde. Biomed Mater Eng. 2015;26(1–2):19–30. DOI: 10.3233/BME-151548. PMID: 26484552
30. Brasselet C., Durand E., Addad F., Al Haj Zen A., Smeets M.B., Laurent-Maquin D., et al. Collagen and elastin cross-linking: a mechanism of constrictive remodeling after arterial injury. Am J Physiol Heart Circ Physiol. 2005;289(5):H2228–33. DOI: 10.1152/ajpheart.00410.2005
31. Zhai W., Zhang H., Wu C., Zhang J., Sun X., Zhang H., et al. Crosslinking of saphenous vein ECM by procyanidins for small diameter blood vessel replacement. J Biomed Mater Res B Appl Biomater. 2014;102(6):1190–8. DOI: 10.1002/jbm.b.33102
32. Shortliffe L.M., Freiha F.S., Kessler R., Stamey T.A., Constantinou C.E. Treatment of urinary incontinence by the periurethral implantation of glutaraldehyde cross-linked collagen. J Urol. 1989;141(3):538–41. DOI: 10.1016/s0022-5347(17)40885-8
33. Richardson T.D., Kennelly M.J., Faerber G.J. Endoscopic injection of glutaraldehyde cross-linked collagen for the treatment of intrinsic sphincter deficiency in women. Urology. 1995;46(3):378–81. DOI: 10.1016/S0090-4295(99)80223-4
34. Frey P., Gudinchet F., Jenny P. GAX 65: new injectable cross-linked collagen for the endoscopic treatment of vesicoureteral reflux—a double-blind study evaluating its efficiency in children. J Urol. 1997;158(3 Pt 2):1210–2. PMID: 9258175
35. Fang M., Yuan J., Peng C., Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014;35(4):2871–82. DOI: 10.1007/s13277-013-1511-7
36. Iselin C.E. Periurethral collagen injections for incontinence following radical prostatectomy: does the patient benefit? Curr Opin Urol. 1999;9(3):209–12. DOI: 10.1097/00042307-199905000-00003
37. Appell R.A. Collagen injection therapy for urinary incontinence. Urol Clin North Am. 1994;21(1):177–82. PMID: 8284841
38. Glynn J.J., Polsin E.G., Hinds M.T. Crosslinking decreases the hemocompatibility of decellularized, porcine small intestinal submucosa. Acta Biomater. 2015;14:96–103. DOI: 10.1016/j.actbio.2014.11.038
39. Kumar D., Benson M.J., Bland J.E. Glutaraldehyde cross-linked collagen in the treatment of faecal incontinence. Br J Surg. 1998;85(7):978–9. DOI: 10.1046/j.1365-2168.1998.00751.x
40. Versteegden L.R., van Kampen K.A., Janke H.P., Tiemessen D.M., Hoogenkamp H.R., Hafmans T.G., et al. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration. Acta Biomater. 2017;52:1–8. DOI: 10.1016/j.actbio.2017.02.005
41. Versteegden L.R., Hoogenkamp H.R., Lomme R.M., Van Goor H., Tiemessen D.M., Geutjes P.J., et al. Design of an elasticized collagen scaffold: A method to induce elasticity in a rigid protein. Acta Biomater. 2016;15(44):277–85. DOI: 10.1016/j.actbio.2016.08.038
42. Lin H., Tang Y., Lozito T.P., Oyster N., Kang R.B., Fritch M.R., et al. Projection stereolithographic fabrication of BMP-2 gene-activated matrix for bone tissue engineering. Sci Rep. 2017;7(1):11327. DOI: 10.1038/s41598-017-11051-0
43. Wang Z., Kumar H., Tian Z., Jin X., Holzman J.F., Menard F., et al. Visible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Appl Mater Interfaces. 2018;10(32):26859–69. DOI: 10.1021/acsami.8b06607
Review
For citations:
Bikbov M.M., Kabirov I.R., Khalimov A.R., Neryakhin A.D., Shmelkova P.N., Gainullina D.Kh., Gumerova L.S., Tukhbatullin A.A., Akhunzyanov A.A., Nadezhdina E.A. Biopolymer crosslinking: Application and prospects. Creative surgery and oncology. 2025;15(1):50-56. (In Russ.) https://doi.org/10.24060/2076-3093-2025-15-1-50-56