Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case
https://doi.org/10.24060/2076-3093-2025-15-2-75-82
Abstract
Introduction. Cutaneous melanoma is a highly aggressive malignancy with a significant risk of metastasis. Current treatment strategies include surgical resection, immunotherapy, and targeted therapy directed at mutations in the MAPK/ ERK pathway, particularly BRAF V600E. Despite the efficacy of dual BRAF/MEK inhibition, the rapid development of drug resistance remains a challenge, prompting interest in combination immunotherapy plus targeted therapy. Aim. This study aimed to evaluate the efficacy and tolerability of triple therapy, involving atezolizumab, vemurafenib, and cobimetinib in patients with BRAF V600 mutation-driven metastatic melanoma following failure of prior lines of therapy. Materials and methods. We present a detailed case report of a patient with metastatic cutaneous melanoma who achieved disease stabilization for 27 months following surgery and first-line therapy with dabrafenib and trametinib. After subsequent progression, second- and third-line therapies with pembrolizumab followed by pembrolizumab and lenvatinib were administered; however, both therapies proved ineffective. Fourth-line therapy with atezolizumab, vemurafenib, and cobimetinib demonstrated a significant clinical response. Results and discussion. Following six months of triple therapy, positron emission tomography/computed tomography (PET/CT) confirmed complete metabolic regression of the previously identified lesions, including those in the intrathoracic lymph nodes and pulmonary metastases. The treatment was well tolerated, with no grade 3–4 adverse events. Conclusion. This clinical case highlights the potential of the atezolizumab, vemurafenib, and cobimetinib therapy in patients with pretreated BRAF V600E-mutated metastatic melanoma. This regimen may benefit patients with acquired resistance to BRAF/MEK inhibitors and immune checkpoint inhibitors. The findings underscore the importance of personalized treatment strategies and the need for further research in this area.
About the Authors
V. E. AskarovRussian Federation
Vadim E. Askarov — Oncology Unit of Antineoplastic Drug Therapy
Ufa
A. V. Sultanbaev
Russian Federation
Alexander V. Sultanbaev — Cand. Sci. (Med.), Antiсancer Drug Therapy Unit
Ufa
K. V. Menshikov
Russian Federation
Konstantin V. Menshikov — Cand. Sci. (Med.), Assoc. Prof., Department of Oncology and Clinical Morphology, Chemotherapy Unit
Ufa
V. S. Chalov
Russian Federation
Vitaly S. Chalov — Radiotherapy Unit
Ufa
N. I. Sultanbaeva
Russian Federation
Nadezhda I. Sultanbaeva — Antiсancer Drug Therapy Unit No.1
Ufa
I. A. Menshikova
Russian Federation
Irina A. Menshikova — Cand. Sci. (Med.), Assoc. Prof., Department of Biological Chemistry
Ufa
References
1. Siegel R.L., Miller K.D., Wagle N.S., Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. DOI: 10.3322/caac.21763
2. Arnold M., Singh D., Laversanne M., Vignat J., Vaccarella S., Meheus F., et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022;158(5):495–503. DOI: 10.1001/jamadermatol.2022.0160
3. Whiteman D.C., Green A.C., Olsen C.M. The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol. 2016;136(6):1161–71. DOI: 10.1016/j.jid.2016.01.035
4. Hayward N.K., Wilmott J.S., Waddell N., Johansson P.A., Field M.A., Nones K., et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80. DOI: 10.1038/nature22071
5. Wessely A., Steeb T., Berking C., Heppt M.V. How neural crest transcription factors contribute to melanoma heterogeneity, cellular plasticity, and treatment resistance. Int J Mol Sci. 2021;22(11):5761. DOI: 10.3390/ijms22115761
6. Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. DOI: 10.1016/j.cell.2015.05.044
7. Kozyra P., Pitucha M. Revisiting the role of B-RAF Kinase as a therapeutic target in melanoma. Curr Med Chem. 2024;31(15):2003–20. DOI: 10.2174/0109298673258495231011065225
8. Diaz M.J., Tran J.T., Choo Z.N., Root K.T., Batchu S., Milanovic S., et al. Genomic subtypes of cutaneous melanoma have distinct metabolic profiles: A single-cell transcriptomic analysis. Arch Dermatol Res. 2023;315(10):2961–5. DOI: 10.1007/s00403-023-02690-7
9. Bauer J., Büttner P., Murali R., Okamoto I., Kolaitis N.A., Landi M.T., et al. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res. 2011;24(2):345–51. DOI: 10.1111/j.1755-148X.2011.00837.x
10. Beleaua M.A., Jung I., Braicu C., Milutin D., Gurzu S. SOX11, SOX10 and MITF gene interaction: a possible diagnostic tool in malignant melanoma. Life (Basel). 2021;11(4):281. DOI: 10.3390/life11040281
11. Sun J., Carr M.J., Khushalani N.I. Principles of targeted therapy for melanoma. Surg Clin North Am. 2020;100(1):175–88. DOI: 10.1016/j.suc.2019.09.013
12. Kakadia S., Yarlagadda N., Awad R., Kundranda M., Niu J., Naraev B., et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther. 2018;11:7095–107. DOI: 10.2147/OTT.S182721
13. Ascierto P.A., Ribas A., Larkin J., McArthur G.A., Lewis K.D., Hauschild A., et al. Impact of initial treatment and prognostic factors on postprogression survival in BRAF-mutated metastatic melanoma treated with dacarbazine or vemurafenib ± cobimetinib: a pooled analysis of four clinical trials. J Transl Med. 2020;18(1):294. DOI: 10.1186/s12967-020-02458-x
14. Robert C., Grob J.J., Stroyakovskiy D., Karaszewska B., Hauschild A., Levchenko E., et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381(7):626–36. DOI: 10.1056/NEJMoa1904059
15. Dummer R., Ascierto P.A., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018;19(10):1315–27. DOI: 10.1016/S1470-2045(18)30497-2
16. Guha A., Jain P., Fradley M.G., Lenihan D., Gutierrez J.M., Jain C., et al. Cardiovascular adverse events associated with BRAF versus BRAF/ MEK inhibitor: Cross-sectional and longitudinal analysis using two large national registries. Cancer Med. 2021;10(12):3862–72. DOI: 10.1002/cam4.3938
17. Gutzmer R., Stroyakovskiy D., Gogas H., Robert C., Lewis K., Protsenko S., et al. Atezolizumab, vemurafenib, and cobimetinib as firstline treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, doubleblind, placebo-controlled, phase 3 trial. Lancet. 2020;395(10240):1835– 44. DOI: 10.1016/S0140-6736(20)30934-X
18. Swetter S.M., Johnson D., Albertini M.R., Barker C.A., Bateni S., Baumgartner J., et al. NCCN Guidelines® Insights: Melanoma: Cutaneous, Version 2.2024. J Natl Compr Canc Netw. 2024;22(5):290–8. DOI: 10.6004/jnccn.2024.0036
19. Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D., et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. DOI: 10.1056/NEJMoa1504030
20. Ott P.A., Hodi F.S., Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. 2013;19(19):5300–9. DOI: 10.1158/1078-0432.CCR-13-0143
21. Robert C., Long G.V., Brady B., Dutriaux C., Di Giacomo A.M., Mortier L., et al. Five-year outcomes with nivolumab in patients with wildtype BRAF advanced melanoma. J Clin Oncol. 2020;38(33):3937–46. DOI: 10.1200/JCO.20.00995
22. Dummer R., Flaherty K.T., Robert C., Arance A., B de Groot J.W., Garbe C., et al. COLUMBUS 5-year update: a randomized, open-label, phase III trial of encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF. Future Oncol. 2023;19(16):1091–8. DOI: 10.2217/fon-2022-1258
23. Ascierto P.A., Dummer R., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Contribution of MEK inhibition to BRAF/MEK inhibitor combination treatment of BRAF-mutant melanoma: part 2 of the randomized, open-label, phase III COLUMBUS Trial. J Clin Oncol. 2023;41(29):4621–31. DOI: 10.1200/JCO.22.02322
24. Wahid M., Jawed A., Mandal R.K., Dar S.A., Akhter N., Somvanshi P., et al. Recent developments and obstacles in the treatment of melanoma with BRAF and MEK inhibitors. Crit Rev Oncol Hematol. 2018;125:84–8. DOI: 10.1016/j.critrevonc.2018.03.005
25. Steininger J., Gellrich F.F., Schulz A., Westphal D., Beissert S., Meier F. Systemic therapy of metastatic melanoma: on the road to cure. Cancers (Basel). 2021;13(6):1430. DOI: 10.3390/cancers13061430
26. Meirson T., Asher N., Bomze D., Markel G. Safety of BRAF+MEK inhibitor combinations: severe adverse event evaluation. Cancers (Basel). 2020;12(6):1650. DOI: 10.3390/cancers12061650
27. Chanda M., Cohen M.S. Advances in the discovery and development of melanoma drug therapies. Expert Opin Drug Discov. 2021;16(11):1319–47. DOI: 10.1080/17460441.2021.1942834
28. Jespersen H., Bjursten S., Ny L., Levin M. Checkpoint inhibitorinduced sarcoid reaction mimicking bone metastases. Lancet Oncol. 2018;19(6):e327. DOI: 10.1016/S1470-2045(18)30252-3
29. Kazmin A.I., Chernitsyn K.I., Moshurov I.P. A durable complete response to pembrolizumab therapy in a female patient with metastatic melanoma involving the bones. P.A. Herzen Journal of Oncology. 2019;8(3):221–5 (In Russ.). DOI: 10.17116/onkolog2019803115221
30. Amaral T., Ottaviano M., Arance A., Blank C., Chiarion-Sileni V., Donia M., et al. Cutaneous melanoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2025;36(1):10–30. DOI: 10.1016/j.annonc.2024.11.006
31. Luke J.J., Flaherty K.T., Ribas A., Long G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82. DOI: 10.1038/nrclinonc.2017.43
32. Menzer C., Menzies A.M., Carlino M.S., Reijers I., Groen E.J., Eigentler T., et al. Targeted therapy in advanced melanoma with rare BRAF mutations. J Clin Oncol. 2019;37(33):3142–51. DOI: 10.1200/JCO.19.00489
33. Chen D.S., Mellman I. Elements of cancer immunity and the cancerimmune set point. Nature. 2017;541(7637):321–30. DOI: 10.1038/nature21349
34. Satala D., Satala G., Karkowska-Kuleta J., Bukowski M., Kluza A., Rapala-Kozik M., et al. Structural insights into the interactions of candidal enolase with human vitronectin, fibronectin and plasminogen. Int J Mol Sci. 2020;21(21):7843. DOI: 10.3390/ijms21217843
35. Sullivan R.J., Atkins M.B. Molecular targeted therapy for patients with BRAF-mutant melanoma: advances and perspectives. Am Soc Clin Oncol Educ Book. 2020;40:219–29. DOI: 10.1200/EDBK_279947
Review
For citations:
Askarov V.E., Sultanbaev A.V., Menshikov K.V., Chalov V.S., Sultanbaeva N.I., Menshikova I.A. Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case. Creative surgery and oncology. 2025;15(2):171-178. (In Russ.) https://doi.org/10.24060/2076-3093-2025-15-2-75-82