Preview

Creative surgery and oncology

Advanced search

OPTICAL COHERENCE TOMOGRAPHY OPPORTUNITIES IN DETECTION OF CORONARY PLAQUE MORPHOLOGY

https://doi.org/10.24060/2076-3093-2017-7-1-54-57

Abstract

Optical coherence tomography (OCT) is a method of intravascular imaging of coronary arteries with a superior resolution, based on interferometry. The following review presents the technical features of OCT systems, basic characteristics of OCT images. There has been analyzed the experience in detection of vulnerable plaque, distinguishing plaque morphology as a mechanism of acute coronary syndrome. This review focuses on the applicability of OCT in research and clinical practice in the field of invasive cardiology.

About the Authors

I. A. Mustafina
Bashkir State Medical University
Russian Federation

Postgraduate at the Propedeutics of Internal Diseases Department,

Ufa



N. Sh. Zagidullin
Bashkir State Medical University
Russian Federation

Doctor of Medical Sciences, Professor at the Propedeutics of Internal Diseases Department,

Ufa



V. Sh. Ishmetov
Bashkir State Medical University
Russian Federation

Doctor of Medical Sciences, Chair of the X-ray Endovascular Diagnosis and Treatment Department of the Bashkir State Medical University hospital;

Professor at the Hospital Surgery Department of Federal State Budgetary Educational Institution of Higher Education “Bashkir State Medical University”, Ministry of Health of the Russian Federation,

Ufa



V. N. Palvov
Bashkir State Medical University
Russian Federation

Russian Academy of Science corresponding member, Doctor of Medical Sciences, Professor, Rector of Federal State Budgetary Educational Institution of Higher Education “Bashkir State Medical University”, Ministry of Health of the Russian Federation, Chair of the Urology Department,

Ufa



References

1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178-81. DOI: 10.1126/science.1957169.

2. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111(12):1551-5. DOI: 10.1161/01.CIR.0000159354.43778.69.

3. Prati F, Regar E, Mintz GS, Mintz GS, Arbustini E, Di Mario C, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31(4):401-15. DOI: 10.1093/eurheartj/ehp433.

4. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59(12):1058-72. DOI: 10.1016/j.jacc.2011.09.079.

5. Brezinski M, Saunders K, Jesser C, Li X, Fujimoto J. Index matching to improve optical coherence tomography imaging through blood. Circulation. 2001;103(15):1999-2003. PMID: 11306530.

6. Fujimoto J, Schmitt J, Jang IK, editors. Cardiovascular OCT Imaging. Switzerland: Springer; 2015:222.

7. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation. 2003;108(15):1772-8. DOI: 10.1161/01.CIR.0000087480.94275.97.

8. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med. 1992;326(4):242-50. DOI: 10.1056/NEJM199201233260406.

9. Kubo T, Imanishi T, Kashiwagi M, Ikejima H, Tsujioka H, Kuroi A, et al. Multiple coronary lesion instability in patients with acute myocardial infarction as determined by optical coherence tomography. Am J Cardiol. 2010;105(3):318–22. DOI: 10.1016/j.amjcard.2009.09.032.

10. Vergallo R, Ren X, Yonetsu T, Kato K, Uemura S, Yu B, et al. Pancoronary plaque vulnerability in patients with acute coronary syndrome and ruptured culprit plaque: a 3-vessel optical coherence tomography study. Am Heart J. 2014;167(1):59-67. DOI: 10.1016/j.ahj.2013.10.011.

11. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262-75. PMID: 10807742.

12. Vancraeynest D, Pasquet A, Roelants V, Bernhard L, Gerber BL, Jean-Louis J, et al. Imaging the vulnerable plaque. J Am Coll Cardiol. 2011;57(20):1961-79. DOI: 10.1016/j.jacc.2011.02.018.

13. Nissen SE, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation. 2001;103(4):604-16. PMID: 11157729.

14. Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Mailhac A, Villareal-Levy G, et al. Human monocytederived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation. 1995;92(6):1565-9. PMID: 7664441.

15. Minami Y, Phipps J, Hoyt T, Milner TE, Ong DS, Soeda T, et al. Clinical utility of quantitative bright spots analysis in patients with acute coronary syndrome: an optical coherence tomography study. Int J Cardiovasc Imaging. 2015; 31:1479–1487. DOI: 10.1007/s10554-015-0714-y.

16. MacNeill BD, Jang IK, Bouma BE, Iftimia N, Takano M, Yabushita H, et al. Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol. 2004;44(5):972-9. DOI: 10.1016/j.jacc.2004.05.066.

17. Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62(19):1748-58. DOI: 10.1016/j.jacc.2013.05.071.

18. Van der Wal AC, Becker AE, Van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89(1):36-44. PMID: 8281670.

19. Farb A, Burke AP, Tang AL, Liang TY, Mannan P, Smialek J, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation. 1996;93(7):1354–63. PMID: 8641024.


Review

For citations:


Mustafina I.A., Zagidullin N.Sh., Ishmetov V.Sh., Palvov V.N. OPTICAL COHERENCE TOMOGRAPHY OPPORTUNITIES IN DETECTION OF CORONARY PLAQUE MORPHOLOGY. Creative surgery and oncology. 2017;7(1):54-57. (In Russ.) https://doi.org/10.24060/2076-3093-2017-7-1-54-57

Views: 3357


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)