Preview

Creative surgery and oncology

Advanced search

Cranioplasty: Materials and Methods Review

https://doi.org/10.24060/2076-3093-2019-9-4-278-284

Abstract

Reconstructive plastic surgery procedures — cranioplasty in particular — are finding their way into the current dayto-day neurosurgery practices. A defect in the skull bones leads not only to cosmetic defects and related psychological problems, but can also cause neurological disorders. Reconstruction of skull defects is considered an important neurosurgical stage of craniocerebral injury victims’ recovery. Currently, there are no clear established algorithms or timing for cranioplasty. This paper presents data on the history and stages of the development of reconstructive neurosurgery. The efficiency of treatment of the syndrome of the trephinated with cranioplasty has been proven. The key materials used to close the skull bones defects are presented and the requirements for the material used for closing cranial defects are described. Advantages and disadvantages of materials currently used — autograft bone, allograft bone, reperen, polyetherketone, polymethylmethacrylate, titanium, hydroxyapatite — are presented in detail. A separate section of the article is devoted to the methods of transplant modelling — 3D printing and stereolithography. This is followed by the stipulation of the key principles of cranioplasty.

About the Authors

A. V. Yarikov
Privolzhsky District Medical Center of the Federal Medical Biological Agency (FMBA) of Russia; City Clinical Hospital No. 39
Russian Federation

Yarikov Anton Viktorovich — Candidate of Medical Sciences, Neurosurgeon

2 Nizhne-Volzhskaya emb., Nizhny Novgorod, 603001;
144 Moscow highway, Nizhny Novgorod, 603028



A. P. Fraerman
City Clinical Hospital No. 39; Privolzhsky Research Medical University
Russian Federation

Fraerman Aleksandr Petrovich — Doctor of Medical Sciences, Professor, Neurosurgeon, Honored Scientist of the Russian Federation, Researcher of the Microneurosurgery Group

144 Moscow highway, Nizhny Novgorod, 603028;
10/1 Minin and Pozharsky sq., Nizhny Novgorod, 603005



V. A. Leonov
Privolzhsky Research Medical University
Russian Federation

Leonov Vasiliy Aleksandrovich — Student of the Faculty of General Medicine

10/1 Minin and Pozharsky sq., Nizhny Novgorod, 603005



O. A. Perlmutter
City Clinical Hospital No. 39; Privolzhsky Research Medical University; City Clinical Hospital No. 40
Russian Federation

Perlmutter Olga Aleksandrovna — Doctor of Medical Sciences, Professor, Neurosurgeon, Honored Doctor of the Russian Federation, Researcher of the Microneurosurgery Group

144 Moscow highway, Nizhny Novgorod, 603028;
10/1 Minin and Pozharsky sq., Nizhny Novgorod, 603005;
71 Hero Yury Smirnov str., Nizhny Novgorod, 603083

 



S. E. Tikhomirov
Regional Hospital No. 3
Russian Federation

Tikhomirov Sergey Evgenevich — Candidate of Medical Sciences, Neurosurgeon

24 3b Microdistrict, Tobolsk, 626150, Tyumensky District



A. V. Yaksargin
City Clinical Hospital No. 40
Russian Federation

Yaksargin Aleksey Vladimirovich — Neurosurgeon

71 Hero Yury Smirnov str., Nizhny Novgorod, 603083



P. V. Smirnov
Privolzhsky District Medical Center of the Federal Medical Biological Agency (FMBA) of Russia
Russian Federation

Smirnov Petr Vladimirovich — Neurosurgeon

2 Nizhne-Volzhskaya emb., Nizhny Novgorod, 603001



References

1. Koporushko N.A., Stupak V.V., Mishinov S.V., Orlov K.Yu., Astrakov S.V., Vardosanidze V.K., et al. Etiology and epidemiology of acquired defects of the skull bones, obtained with different pathologies of the central nervous system and the number of patients needing to their closed case for large industrial city. Modern problems of science and education. 2019;(2):120 (In Russ.).

2. Sinbukhova E.V., Kravchuk A.D., Chobulov S.A. Emotional state of the patient at the stage of reconstructive surgery. Medical newsletter of Vyatka. 2017;(2):85–7 (In Russ.).

3. Lihterman L.B., Potapov A.A., Klevno V.A., Kravchuk A.D., Ohlopkov V.A. Aftereffects of head injury. Russian Journal of Forensic Medicine. 2016;2(4):4–20 (In Russ.) DOI: 10.19048/2411-8729-2016-2-4-4-20

4. Semenova Zh.B., Marshintsev A.V. Neuronavigation in reconstructive surgery of a giant skull defect after decompressive craniectomy. Pediatric neurosurgery and neurology. 2017;(4):73–9 (In Russ.).

5. Stupak V.V., Mishinov S.V., Sadovoy M.A., Koporushko N.A., Mamonova E.V., Panchenko A.A., et al. Modern materials used to close defects of the bones of the skull. Modern problems of science and education. 2017;(4):38 (In Russ.).

6. Bagaturija G.O. Prospects for the use of 3D-printing when planning surgery. Medicine: theory and practice. 2016;1(1):26–35 (In Russ.).

7. Koporushko N.A., Stupak V.V., Mishinov S.V., Orlov K.YU., Astrakov S.V., Vardosanidze V.K., et al. Epidemiology and etiology of acquired disorders of the skull bones on the example of a large industrial city. Russian Neurosurgical Journal Named After Professor Polenov. 2019;10(S):209–10 (In Russ.).

8. Dyusembekov E.K., Isataev B.S., Sadykova Zh.B., Aglakov B.M., Li K.Yu. Cranioplasty: using 3D implants for repair skull defect. Vestnik KazNMU. 2016;(4):82–92 (In Russ.).

9. Kravchuk A.D., Sinbuhova E.V., Potapov A.A., Stepnova L.A., Lubnin A.Yu., Danilov G.V., et al. Clinical-neuropsychological assessment of patients with traumatic brain injury before and after cranioplasty. Acmeology. 2018;(4):71–82 (In Russ.).

10. Sinbukhova E.V., Kravchuk A.D., Lubnin A.Y., Danilov G.V., Ochlopkov V.A., Stepnova L.A. Dynamics of cognitive function of patients with defects of the skull after reconstructive surgery. The Russian Archives of Internal Medicine. 2017;7(2):131–8 (In Russ.). DOI: 10.20514/2226-6704-2017-7-2-131-138

11. Stocchetti N., Carbonara M., Citerio G., Ercole A., Skrifvars M.B., Smielewski P., et al. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 2017;16(6):452–64. DOI: 10.1016/S1474-4422(17)30118-7

12. Sinbukhova E.V., Stepnova L.A., Kravchuk A.D., Chobulov S.A. Case report: psychological state and cognitive functions of a patient at a surgical reconstruction stage of the skull defect after traumatic brain injury. Acmeology. 2017;(1):157–61 (In Russ.).

13. Mishinov S.V., Stupak V.V., Koporushko N.A. Cranioplasty: a review of methods and new technologies in implants manufacturing. Polytrauma. 2018;(4):82–9 (In Russ.).

14. Malcolm J.G., Rindler R.S., Chu J.K., Chokshi F., Grossberg J.A., Pradilla G., et al. Early cranioplasty is associated with greater neurological improvement: a systematic review and meta-analysis. Neurosurgery. 2018;82(3):278–88. DOI: 10.1093/neuros/nyx182

15. Gaibov S.S.H., Vorob’ev D.P., Zaharchuk I.A., Zaharchuk E.V. Plastic reconstruction of a complex giant skull disorder (clinical case). Universitetskaya medicina Urala. 2018:4(3):7–9 (In Russ.).

16. Ivanov O.V., Semichev E.V., Shnyakin P.G., Sobakar E.G. Reconstraction of cranial bone defects from autotransplantation to modern biomaterials (review). Medical science and education of Ural. 2018;19(3):143–9 (In Russ.).

17. Konovalov An.N., Pilipenko Yu.V., Eliava Sh.Sh. Technical features and complications of cranioplasty in patients after decompressive craniectomy in the acute period of subarachnoid hemorrhage. Problems of neurosurgery named after N.N. Burdenko. 2018;82(5):88–95 (In Russ.). DOI: 10.17116/neiro20188205188

18. Rosinski C.L., Chaker A.N., Zakrzewski J., Geever B., Patel S., Chiu R., e al. Autologous bone cranioplasty: a retrospective comparative analysis of frozen and subcutaneous bone flap storage methods. World Neurosurg. 2019;131:e312–20. DOI: 10.1016/j.wneu.2019.07.139

19. Fan M.C., Wang Q.L., Sun P., Zhan S.H., Guo P., Deng W.S., et al. Cryopreservation of autologous cranial bone flaps for cranioplasty: a large sample retrospective study. World Neurosurg. 2018;109:e853–9. DOI: 10.1016/j.wneu.2017.10.112

20. Stieglitz L.H., Fung C., Murek M., Fichtner J., Raabe A., Beck J. What happens to the bone flap? Long-term outcome after reimplantation of cryoconserved bone flaps in a consecutive series of 92 patients. Acta Neurochir (Wien). 2015;157(2):275–80. DOI: 10.1007/s00701-0142310-7

21. Ivanov V.P. Kim A.V., Khachatryan W.A. 3D-printing in craniofacial surgery and neurosurgery. Experience of the Almazov national medical research centre. Pediatric Neurosurgery and Neurology. 2018;(3):28–39 (In Russ.).

22. Morton R.P., Abecassis I.J., Hanson J.F., Barber J., Nerva J.D., Emerson S.N., et al. Predictors of infection after 754 cranioplasty operations and the value of intraoperative cultures for cryopreserved bone flaps. J Neurosurg. 2016;125(3):766–70. DOI: 10.3171/2015.8.JNS151390

23. Role of additive technologies in modern reconstructive surgery. Military Medical Journal. 2019;340(10):28–32 (In Russ.).

24. Kravchuk A.D., Komlev V.S., Mamonov V.E., Okhlopkov V.A., Barinov S.M., Fedotov A.Yu., et al. Additive technologies in creating individual bone structures based on porous and titanium mesh composites for skull prosthetics in reconstructive neurosurgery. Annals of the plastic, reconstructive and aesthetic surgery. 2017;(1):103 (In Russ.).

25. Mishinov S.V., Stupak V.V., Mamonova N.V., Panchenko A.A., Krasovsky I.B., Lazurenko D.V. Methods for three-dimensional prototyping and printing in reconstructive neurosurgery Biomedical Engineering. 2017;51(2):106–10. DOI: 10.1007/s10527-017-9694-7

26. Gavrilova L.O., Mishinov S.V., Aronov A.M., Mamonova E.V., Mamonova N.V., Grif A.M. Development of the automated information system for designing and simulation individual implants obtained byadditive methods on the example of draft drawers substitution. International journal of applied and fundamental research. 2017;(11– 2):209–13 (In Russ.).

27. Mishinov S.V., Stupak V.V., Koporushko N.A., Samokhin A.G., Panchenko A.A., Krasovskii I.B., et al. Titanium patient-specific implants in reconstructive neurosurgery. Biomedical Engineering. 2018;52(3):152–5. DOI: 10.1007/s10527-018-9802-3

28. Kravchuk A.D., Potapov A.A., Panchenko V.Ya., Komlev V.S., Novikov M.M., Okhlopkov V.A., et al. Additive technologies in neurosurgery. Problems of neurosurgery named after N.N. Burdenko. 2018;82(6):97–104 (In Russ.). DOI: 10.17116/neiro20188206197

29. Nagibovich O.A., Svistov D.V., Peleshok S.A., Korovin A.E., Gorodkov E.V. Application of 3D-printing technology in medicine. Clinical Pathophysiology. 2017;23(3):14–22 (In Russ.).

30. Mishinov S.V., Stupak V.V., Mamuladze T.Z., Koporushko N.A., Mamonova N.V., Panchenko A.A., et al. Three dimensional modeling and printing for education in neurosurgery. International journal of applied and fundamental research. 2016;(11-6):1063–7 (In Russ.).

31. Potapov A.A., Konovalov A.N., Kornienko V.N., Kravchuk A.D., Lihterman L.B., Pronin I.N., et al. Modern technologies and fundamental research in neurosurgery. Vestnik Rossijskoj akademii nauk. 2015;85(4):299 (In Russ.). DOI: 10.7868/S086958731504009X

32. Chobulov S.A., Kravchuk A.D., Potapov A.A., Likhterman L.B., Maryakhin A.D., Sinbukhova E.V. Modern aspects of reconstructive surgery of skull defects. Problems of neurosurgery named after N.N. Burdenko. 2019;83(2):115–24 (In Russ.). DOI: 10.17116/neiro201983021115

33. Mishinov S.V., Stupak V.V., Koporushko N.A., Panchenko A.A., Krasovskij I.B., Desyatyh I.V. Three-dimensional modeling and printing in neurosurgery. In: VIII All-Russian Congress of Neurological Surgeons. Saint-Peterburg. 2018:169 (In Russ.).

34. Höhne J., Werzmirzowsky K., Ott C., Hohenberger C., Hassanin B.G., Brawanski A., et al. Outcomes of Cranioplasty with Preformed Titanium versus Freehand Molded Polymethylmethacrylate Implants. J Neurol Surg A Cent Eur Neurosurg. 2018;79(3):200–5. DOI: 10.1055/s-0037-1604362

35. Goldstein J.A., Paliga J.T., Bartlett S.P. Cranioplasty: indications and advances. Curr Opin Otolaryngol Head Neck Surg. 2013;21(4):400–9. DOI: 10.1097/MOO.0b013e328363003e

36. Di Stefano C., Rinaldesi M.L., Quinquinio C., Ridolfi C., Vallasciani M., Sturiale C., et al. Neuropsychological changes and cranioplasty: A group analysis. Brain Inj. 2016;30(2):164–71. DOI: 10.3109/02699052.2015.1090013

37. Morton R.P., Abecassis I.J., Hanson J.F., Barber J.K., Chen M., Kelly C.M., et al. Timing of cranioplasty: a 10.75-year single-center analysis of 754 patients. J Neurosurg. 2018;128(6):1648–52. DOI: 10.3171/2016.11.JNS161917

38. Alekseev D.E., Svistov D.V., Korovin A.E., Gordeev A.S., Efimov N.S. Prospects of application of dura mater›s substitutes in the treatment of cranial defects in peacetime and wartime. Izvestia of the Russian military medical academy. 2016;35(1):26–30 (In Russ.).

39. Park S.P., Kim J.H., Kang H.I., Kim D.R., Moon B.G., Kim J.S. Bone flap resorption following cranioplasty with autologous bone: quantitative measurement of bone flap resorption and predictive factors. J Korean Neurosurg Soc. 2017;60(6):749–54. DOI: 10.3340/jkns.2017.0203.002


Review

For citations:


Yarikov A.V., Fraerman A.P., Leonov V.A., Perlmutter O.A., Tikhomirov S.E., Yaksargin A.V., Smirnov P.V. Cranioplasty: Materials and Methods Review. Creative surgery and oncology. 2019;9(4):278-284. (In Russ.) https://doi.org/10.24060/2076-3093-2019-9-4-278-284

Views: 14437


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)