Preview

Creative surgery and oncology

Advanced search

Antitumour Drug Induced Cardiovascular Toxicity and Current Tumour Treatment Methods

https://doi.org/10.24060/2076-3093-2019-9-4-285-292

Abstract

Currently the oncological mortality takes the second place globally, the leading cause being cardiovascular diseases. The statistics of malignant neoplasms is rather negative all over the world. 10 million of cases of oncological disorders are diagnosed annually; this means that 27 million people fall sick with oncological diseases annually. It was established in 2019 that there are 14 million people suffering from oncological diseases, 8.2 million of these die. WHO anticipates that in 20 years’ time the malignant neoplasm incidence statistics will be on an increase as the number of new cases will reach 20 million, 12 million out of which will die.
Regardless of such formidable figures medicine does not stand still; keeping up with the times, the science attempts to develop cutting edge methods of treating malignant tumours. As a result, the treatment of malignant neoplasms is continuing to improve. However, the number of side effects is also growing, thus requiring research attention. Therefore, the significance of the impact that oncological drugs have on a patient’s body is becoming more and more urgent for further discussion.
While current tumour treatment methods involving drugs such as tyrosine kinase inhibitors, anthracycline chemotherapy and immunotherapy protocols are effective for the treatment of various forms of cancer, these drugs affect the DNA replication process thus resulting in endothelial dysfunction and nonspecific immune response. This causes cardiotoxic side effects.
Cardiotoxicity, in its turn, is a notion that includes various adverse events involving the cardiovascular system of oncological patients receiving drug treatment. Cardiotoxicity may develop during treatment or following its completion.

About the Authors

K. S. Gumerova
Bashkir State Medical University
Russian Federation

Gumerova Kamila Sergeevna — Sixth-yearstudent of the Faculty of General Medicine

3 Lenin str., Ufa, 450008



G. M. Sakhautdinova
Bashkir State Medical University
Russian Federation

Sakhautdinova Gyulnar Muratovna — Doctor of Medical Sciences, Professor of the Department of Outpatient Therapy with the Course of Additional Professional Education

3 Lenin str., Ufa, 450008



I. M. Polyakova
Outpatient Clinic of the City Clinical Hospital No. 5
Russian Federation

Polyakova Irina Mikhailovna — Internist

84 Tsuryupy str., 450077



References

1. U.S. National Library of Medicine: National Institutes of Health; 2018. Available from: https://www.nih.gov.

2. Cheungpasitporn W., Kopecky S.L., Specks U., Bharucha K., Fervenza F.C. Non-ischemic cardiomyopathy after rituximab treatment for membranous nephropathy. J Renal Inj Prev. 2017;6(1):18–25. DOI: 10.15171/jrip.2017.04

3. Dong J., Chen H. Cardiotoxicity of anticancer therapeutics. Front Cardiovasc Med. 2018;5:9. DOI: 10.3389/fcvm.2018.00009

4. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines. Russian Journal of Cardiology. 2017;(3):105–39 (In Russ.). DOI: 10.15829/1560-4071-2017-3-105-139

5. Sakaeva D.D. Algorithms for management of patients with adverse events on therapy with tyrosine kinase inhibitors EGFR. Medical Council. 2017;(6):38–50 (In Russ.). DOI: 10.21518/2079-701X-20176-38-50

6. Ewer M.S., Ewer S.M. Cardiotoxicity of anticancer treatments. Nat Rev Cardiol. 2015;12(9):547–58. DOI: 10.1038/nrcardio.2015.65

7. Brana I., Zamora E., Oristrell G., Tabernero J. Side effects of medical cancer therapy. Cardiotoxicity. 2018;14:406. DOI: 10.1007/978-3319-70253-7_14

8. Shah C., Gong Y., Szady A., Sun Q., Pepine C.J., Langaee T., et al. Unanticipated cardiotoxicity associated with targeted anticancer therapy in patients with hematologic malignancies patients: natural history and risk factors. Cardiovasc Toxicol. 2018;18(2):184–91. DOI: 10.1007/s12012-017-9429-8

9. Heinzerling L., Ott P.A., Hodi F.S., Husain A.N., Tajmir-Riahi A., Tawbi H., et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunother Cancer. 2016;4:50. DOI: 10.1186/s40425-016-0152-y

10. Pugazhendhi A., Edison T.N.J., Velmurugan B.K., Jacob J.A., Karuppusamy I. Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life Sci. 2018;200:26–30. DOI: 10.1016/j.lfs.2018.03.023

11. Raschi E., Diemberger I., Cosmi B., De Ponti F. ESC position paper on cardiovascular toxicity of cancer treatments: challenges and expectations-authors’ reply. Intern Emerg Med. 2018;13(4):635–6. DOI: 10.1007/s11739-018-1853-7

12. Ghosh A.K., Walker J.M. Cardio-oncology. Br J Hosp Med (Lond). 2017;78(1):C11–3. DOI: 10.12968/hmed.2017.78.1.C11

13. Feijen E.A.M., Leisenring W.M., Stratton K.L., Ness K.K., van der Pal H.J.H., van Dalen E.C., et al. Derivation of anthracycline and anthraquinone equivalence ratios to doxorubicin for late-onset cardiotoxicity. JAMA Oncol. 2019;5(6):864–71. DOI: 10.1001/jamaoncol.2018.6634

14. Shah C.P., Moreb J.S. Cardiotoxicity due to targeted anticancer agents: a growing challenge. Ther Adv Cardiovasc Dis. 2019;13:1753944719843435. DOI: 10.1177/175394471984343

15. Snegovaya A.V., Vitsenya M.V., Kopp M.V., Larionova V.B. Practical guidelines for corrections of cardiovascular toxicity induced by chemoterapy and target drugs. Malignant tumors. 2016;(4-S2):418–27 (In Russ.). DOI: 10.18027/2224-5057-2016-4s2-418-427

16. Henriksen P.A. Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention. Heart. 2018;104(12):971–77. DOI: 10.1136/heartjnl-2017-312103

17. Zamorano J.L., Lancellotti P., Rodriguez Muñoz D., Aboyans V., Asteggiano R., Galderisi M., et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801. DOI: 10.1093/eurheartj/ehw211

18. Di Lisi D., Madonna R., Zito C., Bronte E., Badalamenti G., Parrella P., et al. Anticancer therapy-induced vascular toxicity. VEGF inhibition and beyond. Int J Cardiol. 2017;227:11–7. DOI: 10.1016/j.ijcard.2016.11.174

19. Golubtsov O.Y., Tyrenko V.V., Lyutov V.V., Maslyakov V.V., Makiev R.G. Cardiovascular complications of anticancer therapy. Modern problems of science and education. 2017;22(2):126 (In Russ.).

20. Habibi H.R. The complex picture of new therapeutic modalities and their potential cardiovascular effects, “Cardio-oncology challenge extends to other field of medicine”. J Cardiovasc Dis Card Surg. 2018:07–09. DOI: 10.29199/CDCS.101013

21. Tromp J., Steggink L.C., Van Veldhuisen D.J., Gietema J.A., van der Meer P. Cardio-oncology. Progress in diagnosis and treatment of cardiac dysfunction. Clin Pharmacol Ther. 2017;101(4):481–90. DOI: 10.1002/cpt.614

22. Zheng P.P., Li J., Kros J.M. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research-practice gaps, challenges, and insights. Med Res Rev. 2018;38(1):325–376. DOI: 10.1002/med.21463

23. Cuomo A., Rodolico A., Galdieri A., Russo M., Campi G., Franco R., et al. Heart failure and cancer: mechanisms of old and new cardiotoxic drugs in cancer patients. Card Fail Rev. 2019;5(2):112–18. DOI: 10.15420/cfr.2018.32.2

24. Jain D., Ahmad T., Cairo M., Aronow W. Cardiotoxicity of cancer chemotherapy: identification, prevention and treatment. Ann Transl Med. 2017;5(17):348. DOI: 10.21037/atm.2017.06.35

25. Yandieva R.A., Saribekyan E.K., Mamedov M.N. Cardiotoxicity of cancer therapy. International Heart and Vascular Disease Journal. 2018;6(17):3–11 (In Russ.).

26. Lenneman C.G., Sawyer D.B. An update on cardiotoxicity of cancerrelated treatment. Circ Res. 2016:118(6):1008–20. DOI: 10.1161/CIRCRESAHA.115.303633

27. Wittayanukorn S., Qian J., Westrick S.C., Billor N., Johnson B., Hansen R.A. Prevention of trastuzumab and anthracycline-induced cardiotoxicity using angiotensin-converting enzyme inhibitors or beta-blockers in older adults with breast cancer. Am J Clin Oncol. 2018;41(9):909–18. DOI: 10.1097/COC.0000000000000389

28. Hrynchak I., Sousa E., Pinto M., Costa V.M. The importance of drug metabolites synthesis: the case-study of cardiotoxic anticancer drugs. Drug Metab Rev. 2017;49(2):158–96. DOI: 10.1080/03602532.2017.1316285

29. Avelar E., Strickland C.R., Rosito G. Role of imaging in cardio-oncology. Curr Treat Options Cardiovasc Med. 2017;19:46. DOI: 10.1007/s11936-017-0546-2

30. McGowan J.V., Chung R., Maulik A., Piotrowska I., Walker J.M., Yellon D. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31:63–75 DOI: 10.1007/s10557-016-6711-0

31. Wilkinson E.L., Sidaway J.E., Cross M.J. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability. Biol Open. 2016;5(10):1362–70. DOI: 10.1242/bio.020362

32. Curigliano G., Cardinale D., Dent S., Criscitiello C., Aseyev O., Lenihan D., et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin. 2016;66(4):309–25. DOI: 10.3322/caac.21341

33. Abdel-Qadir H., Ethier J.L., Lee D.S., Thavendiranathan P., Amir E. Cardiovascular toxicity of angiogenesis inhibitors in treatment of malignancy: a systematic review and meta-analysis. Cancer Treat Rev. 2017;53:120–7. DOI: 10.1016/j.ctrv.2016.12.002

34. Tromp J., Steggink L.C., Van Veldhuisen D.J., Gietema J.A., van der Meer P. Cardio-oncology: progress in diagnosis and treatment of cardiac dysfunction. Clin Pharmacol Ther. 2017;101:481–90. DOI: 10.1002/cpt.614

35. Chen Z.I., Ai D.I. Cardiotoxicity associated with targeted cancer therapies. Mol Clin Oncol. 2016; 4:675–81. DOI: 10.3892/mco.2016.800

36. Walls G.M., Lyon A.R., Harbinson M.T., Hanna G.G. Cardiotoxicity following cancer treatment. Ulster Med J. 2017;86(1):3–9. PMID: 28298705

37. De Angelis A., Urbanek K., Cappetta D., Piegari E., Pia Ciuffreda L., Rivellino A., et al. Doxorubicin cardiotoxicity and target cells: a broader perspective. Cardiooncology. 2016;2:2. DOI: 10.1186/s40959016-0012-4

38. Tahover E., Segal A., Isacson R., Rosengarten O., Grenader T., Gips M., et al. Dexrazoxane added to doxorubicin-based adjuvant chemotherapy of breast cancer: a retrospective cohort study with a comparative analysis of toxicity and survival. Anticancer Drugs. 2017;28:787–94. DOI: 10.1097/CAD.0000000000000514

39. Coen van Hassselt J.G., Iyengar R. Systems pharmacology-based identification of pharmacogenomic determinants of adverse drug reactions using human iPSC-derived cell lines. Curr Opin Syst Biol. 2017;4:9–15. DOI: 10.1016/j.coisb.2017.05.006


Review

For citations:


Gumerova K.S., Sakhautdinova G.M., Polyakova I.M. Antitumour Drug Induced Cardiovascular Toxicity and Current Tumour Treatment Methods. Creative surgery and oncology. 2019;9(4):285-292. (In Russ.) https://doi.org/10.24060/2076-3093-2019-9-4-285-292

Views: 5198


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)