Preview

Creative surgery and oncology

Advanced search

Exosomal Long NonCoding Rnas as Cancer Biomarkers and Therapeutic Targets

https://doi.org/10.24060/2076-3093-2019-9-4-297-304

Abstract

Extensive study of extracellular vesicles began about ten years ago. Exosomes are extracellular membrane vesicles 30–100 nm in diameter secreted by various types of cells and present in most biological fluids. For a long time they were considered non-functional cellular components. However, it has been proven that they serve as a means of intercellular exchange of information. They can move bioactive molecules such as proteins, lipids, RNA, and DNA. Several studies have shown that their contents, including proteins and non-coding nucleic acids, may be of particular interest as biomarkers of diseases. The most promising of all these molecules are non-coding RNAs (ncRNAs), including microRNAs and long non-coding RNAs (lncRNAs). LncRNAs are a large group of non-coding RNAs (ncRNAs) longer than 200 nucleotides. As regulatory factors lncRNAs play an important role in complex cellular processes, such as apoptosis, growth, differentiation, proliferation, etc. Despite many advances in diagnosis and treatment (surgery, radiation therapy, chemotherapy), cancer remains one of the most important public healthcare problems worldwide. Every day brings a better understanding of the role of exosomes in the development of cancer and metastases. Liquid biopsy has been developed as a method for the detection of cancer at an early stage. This is a series of minimally invasive tests of bodily fluids offering the advantage of real-time tracking of the tumour development. In fact, circulating exosomal lncRNAs have been found to be closely linked to processes of oncogenesis, metastasis and treatment. In this paper we review current studies into the functional role of exosomal lncRNAs in cancer and discuss their potential clinical use as diagnostic biomarkers and therapeutic targets for cancer.

About the Authors

O. A. Beylerli
Bashkir State Medical University
Russian Federation

Beylerli Ozal Arzuman — Post-graduate student of the Department of Urology with the Course of Additional Professional Education

3 Lenin str., Ufa, 450008



I. F. Gareev
Bashkir State Medical University
Russian Federation

Gareev Ilgiz Fanilevich — Post-graduate student of the Department of Neurosurgery and Medical Rehabilitation with the Course of Additional Professional Education

3 Lenin str., Ufa, 450008



V. N. Pavlov
Bashkir State Medical University
Russian Federation

Pavlov Valentin Nikolaevich — Doctor of Medical Sciences, Corresponding Member of the Russian Academy of Sciences, Rector, Head of the Department of Urology with the Course of Additional Professional Education

3 Lenin str., Ufa, 450008



Zhao Shiguang
Harbin Medical University
China

Shiguang Zhao — Professor, Head of the Department of Neurosurgery

157 Baojian Rd, Nangang Qu, Haerbin Shi, Heilongjiang Sheng, 150081



Chen Xin
Harbin Medical University
China

Xin Chen — Assistant lecturer of the Department of Neurosurgery, Pharmacologist

157 Baojian Rd, Nangang Qu, Haerbin Shi, Heilongjiang Sheng, 150081



V. V. Kudriashov
West China Hospital of Sichuan University
China

Kudriashov Valentin Vadimovich — Post-graduate student of the Department of Gastroenterology

Yihuan Road, Chengdu, Sichuan province, 610065



References

1. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016;126(4):1208–15. DOI: 10.1172/JCI81135

2. Tomasetti M., Lee W., Santarelli L., Neuzil J. Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy. Exp Mol Med. 2017;49(1):e285. DOI: 10.1038/ emm.2016.153

3. Raposo G., Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83. DOI: 10.1083/jcb.201211138

4. Chettimada S., Lorenz D.R., Misra V., Dillon S.T., Reeves R.K., Manickam C., et al. Exosome markers associated with immune activation and oxidative stress in HIV patients on antiretroviral therapy. Sci Rep. 2018;8(1):7227. DOI: 10.1038/s41598-018-25515-4

5. King H.W., Michael M.Z., Gleadle J.M. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421. DOI: 10.1186/1471-2407-12-421

6. Sun Z., Shi K., Yang S., Liu J., Zhou Q., Wang G., et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018;17(1):147. DOI: 10.1186/s12943-018-0897-7

7. Melo S.A., Sugimoto H., O’Connell J.T., Kato N., Villanueva A., Vidal A., et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26(5):707–21. DOI: 10.1016/j.ccell.2014.09.005

8. Peinado H., Aleckovic M., Lavotshkin S., Matei I., Costa-Silva B., Moreno-Bueno G., et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91. DOI: 10.1038/nm.2753

9. Ogawa Y., Kanai-Azuma M., Akimoto Y., Kawakami H., Yanoshita R. Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull. 2008;31(6):1059–62. DOI: 10.1248/bpb.31.1059

10. Fu Y., Li C., Luo Y., Li L., Liu J., Gui R. Silencing of long non-coding RNA MIAT sensitizes lung cancer cells to gefitinib by epigenetically regulating miR-34a. Front Pharmacol. 2018;9;82. DOI: 10.3389/fphar.2018.00082

11. Cai T., Liu Y., Xiao J. Long noncoding RNA MALAT1 knockdown reverses chemoresistance to temozolomide via promoting microRNA-101 in glioblastoma. Cancer Medicine. 2018;7(4);1404–15. DOI: 10.1002/cam4.1384

12. Pang Y., Mao C., Liu S. Encoding activities of non-coding RNAs. Theranostics. 2018;8(9);2496–507. DOI: 10.7150/thno.24677

13. Qi P., Zhou X.Y., Du X. Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol Cancer. 2016;15(1);39. DOI: 10.1186/s12943-016-0524-4

14. Enderle D., Spiel A., Coticchia C.M., Berghoff E., Mueller R., Schlumpberger M., et al. Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method. PLoS One. 2015;10(8);e0136133. DOI: 10.1371/journal.pone.0136133

15. Zhou R., Chen K.K., Zhang J., Xiao B., Huang Z., Ju C., et al. The decade of exosomal long RNA species: an emerging cancer antagonist. Mol Cancer. 2018;17(1);75. DOI: 10.1186/s12943-018-0823-z

16. Dong L., Lin W., Qi P., Xu M.D., Wu X., Ni S., et al. Circulating long RNAs in serum extracellular vesicles: their characterization and potential application as biomarkers for diagnosis of colorectal cancer. Cancer Epidemiol Biomark Prev. 2016;25(7):1158–66. DOI: 10.1158/10559965.EPI-16-0006

17. Maurano M.T., Humbert R., Rynes E., Thurman R.E., Haugen E., Wang H., et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5. DOI: 10.1126/science.1222794

18. Schmitt A.M., Chang H.Y. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29(4):452–63. DOI: 10.1016/j.ccell.2016.03.010

19. Peng Z., Zhang C., Duan C. Functions and mechanisms of long noncoding RNAs in lung cancer. Onco Targets Ther. 2016;9;4411–24. DOI: 10.2147/OTT.S109549

20. Cao C., Zhang T., Zhang D., Xie L., Zou X., Lei L., et al. The long noncoding RNA, SNHG6-003, functions as a competing endogenous RNA to promote the progression of hepatocellular carcinoma. Oncogene. 2017;36(8):1112–22. DOI: 10.1038/onc.2016.278

21. Hu Y., Wang J., Qian J., Kong X., Tang J., Wang Y., et al. Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res. 2014;74(23):6890–902. DOI: 10.1158/0008-5472.CAN-14-0686

22. Li D., Liu X., Zhou J., Hu J., Zhang D., Liu J., et al. Long noncoding RNA HULC modulates the phosphorylation of YB-1 through serving as a scaffold of extracellular signal-regulated kinase and YB-1 to enhance hepatocarcinogenesis. Hepatology. 2017;65(5):1612–27. DOI: 10.1002/hep.29010

23. Andrews S.J., Rothnagel J.A. Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet. 2014;15(3):193–204. DOI: 10.1038/nrg3520

24. Xu R., Rai A., Chen M., Suwakulsiri W., Greening D.W., Simpson R.J. Extracellular vesicles in cancer — implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15(10):617–38. DOI: 10.1038/s41571-018-0036-9

25. Trajkovic K., Hsu C., Chiantia S., Rajendran L., Wenzel D., Wieland F., et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244–7. DOI: 10.1126/science.1153124

26. Mulcahy L.A., Pink R.C., Carter D.R. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3. DOI: 10.3402/jev.v3.24641

27. Jin X., Chen Y., Chen H., Fei S., Chen D., Cai X., et al. Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res. 2017;23(17):5311–9. DOI: 10.1158/1078-0432.CCR-17-0577

28. Engreitz J.M., Haines J.E., Perez E.M., Munson G., Chen J., Kane M., et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature. 2016;539(7629):452–5. DOI: 10.1038/nature20149

29. Lin C., Wang Y., Wang Y., Zhang S., Yu L., Guo C., et al. Transcriptional and posttranscriptional regulation of HOXA13 by lncRNA HOTTIP facilitates tumorigenesis and metastasis in esophageal squamous carcinoma cells. Oncogene. 2017;36(38):5392–406. DOI: 10.1038/onc.2017.133

30. Dong L., Lin W., Qi P., Xu M.D., Wu X., Ni S., et al. Circulating long RNAs in serum extracellular vesicles: their characterization and potential application as biomarkers for diagnosis of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2016;25(7):1158–66. DOI: 10.1158/10559965.EPI-16-0006

31. Zhou R., Chen K.K., Zhang J., Xiao B., Huang Z., Ju C., et al. The decade of exosomal long RNA species: an emerging cancer antagonist. Mol Cancer. 2018;17(1):75. DOI: 10.1186/s12943-018-0823-z

32. Revenfeld A.L.S., Bæk R., Nielsen M.H., Stensballe A., Varming K., Jørgensen M. Diagnostic and prognostic potential of extracellular vesicles in peripheral blood. Clin Ther. 2014;36(6):830–46. DOI: 10.1016/j.clinthera.2014.05.008

33. Skog J., Wurdinger T., Rijn S., Meijer D., Gainche L., Esteves M.S., et al. Glioblastoma microvesicles transport RNA and protein that promote tumor growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6. DOI: 10.1038/ncb1800

34. Qu L., Ding j., Cheng Chen, Zhen Jie Wu, Bing Liu, Yi Gao, et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell. 2016;29(5);653–68. DOI: 10.1016/j.ccell.2016.03.004

35. Pan L., Liang W., Fu M., Huang Z.H., Li X., Zhang W., et al. Exosomesmediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. J Cancer Res Clin Oncol. 2017;143(6):991–1004. DOI: 10.1007/s00432-017-2361-2

36. Wang J., Zhou Y., Lu J., Sun Y., Xiao H., Liu M., et al. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med Oncol. 2014;31(9):148. DOI: 10.1007/s12032-014-0148-8

37. Ge X., Wang Y., Nie J., Li Q., Tang L., Deng X., et al. The diagnostic/prognostic potential and molecular functions of long non-coding RNAs in the exosomes derived from the bile of human cholangiocarcinoma. Oncotarget. 2017;25;8(41):69995–70005. DOI: 10.18632/oncotarget.19547

38. Zhang J., Liu S.C., Luo X.H., Tao G.X., Guan M., Yuan H., et al. Exosomal long noncoding RNAs are differentially expressed in the cervicovaginal lavage samples of cervical cancer patients. J Clin Lab Anal. 2016;30(6):1116–21. DOI: 10.1002/jcla.21990

39. Berrondo C., Flax J., Kucherov V., Siebert A., Osinski T., Rosenberg A., et al. Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS One. 2016;11(1):e0147236. DOI: 10.1371/journal.pone.0147236

40. Guo K., Yao J., Yu Q., Li Z., Huang H., Cheng J., et al. The expression pattern of long non-coding RNA PVT1 in tumor tissues and in extracellular vesicles of colorectal cancer correlates with cancer progression. Tumor Biology. 2017;39(4). DOI: 10.1177/1010428317699122

41. Xue M., Chen W., Xiang A., Wang R., Chen H., Pan J., et al. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Mol Cancer. 25;16(1):143. DOI: 10.1186/s12943-017-0714-8

42. David C.J., Huang Y.H., Chen M., Su J., Zou Y., Bardeesy N., et al. TGF-β Tumor Suppression through a Lethal EMT. Cell. 2016;164(5):1015–30. DOI: 10.1016/j.cell.2016.01.009

43. Xu C.G., Yang M.F., Ren Y.Q., Wu C.H., Wang L.Q. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. Eur Rev Med Pharmacol Sci. 2016;20(20):4362–8. PMID: 27831634

44. Dong H., Wang W., Chen R., Zhang Y., Zou K., Ye M., et al. Exosomemediated transfer of lncR-NASNHG14 promotes trastuzumab chemoresistance in breast cancer. Int J Oncol. 2018;53(3):1013–26. DOI: 10.3892/ijo.2018.4467

45. Zhang W., Cai X., Yu J., Lu X., Qian Q., Qian W. Exosome-mediated transfer of lncRNA RP11838N2.4 promotes erlotinib resistance in nonsmall cell lung cancer. Int J Oncol. 2018;53(2):527–38. DOI: 10.3892/ijo.2018.4412

46. Schmidt M., Fernandez de Mattos S., van der Horst A., Klompmaker R., Kops G.J., Lam E.W., et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol. 2002;22(22):7842–52. DOI: 10.1128/mcb.22.22.7842-7852.2002

47. Kang M., Ren M., Li Y., Fu Y., Deng M., Li C. Exosome-mediated transfer of lncRNA PART1 induces gefitinib resistance in esophageal squamous cell carcinoma via functioning as a competing endogenous RNA. J Exp Clin Cancer Res. 2018;37(1):171. DOI: 10.1186/s13046018-0845-9

48. Qu L., Ding J., Chen C., Wu Z.J., Liu B., Gao Y., et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell. 2016;29(5):653–68. DOI: 10.1016/j.ccell.2016.03.004

49. Von Hoff D.D., Ervin T., Arena F.P., Chiorean E.G., Infante J., Moore M., et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691–703. DOI: 10.1056/NEJMoa1304369

50. Senthebane D.A., Rowe A., Thomford N.E., Shipanga H., Munro D., Mazeedi MAMA, et al. The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int J Mol Sci. 2017;18(7):1586. DOI: 10.3390/ijms18071586

51. Maemondo M., Inoue A., Kobayashi K., Sugawara S., Oizumi S., Isobe H., et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8. DOI: 10.1056/NEJMoa0909530

52. Lei Y., Guo W., Chen B., Chen L., Gong J., Li W. Tumor-released lncRNA H19 promotes gefitinib resistance via packaging into exosomes in non‑small cell lung cancer. Oncol Rep. 2018;40(6):3438–46. DOI: 10.3892/or.2018.6762

53. Kang M., Ren M., Li Y., Fu Y., Deng M., Li C. Exosome-mediated transfer of lncRNA PART1 induces gefitinib resistance in esophageal squamous cell carcinoma via functioning as a competing endogenous RNA. J Exp Clin Cancer Res. 2018;37(1):171. DOI: 10.1186/s13046018-0845-9

54. Coelho R.C., Reinert T., Campos F., Peixoto F.A., de Andrade C.A., Castro T., et al. Sunitinib treatment in patients with advanced renal cell cancer: The Brazilian National Cancer Institute (INCA) experience. Int Braz J Urol. 2016;42(4):694–703. DOI: 10.1590/S1677-5538. IBJU.2015.0226

55. Qu L., Ding J., Chen C., Wu Z.J., Liu B., Gao Y., et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell. 2016;29(5):653–68. DOI: 10.1016/j.ccell.2016.03.004

56. Yang Y.N., Zhang R., Du J.W., Yuan H.H., Li Y., Wei X., et al. Predictive role of UCA1-containing exosomes in cetuximab-resistant colorectal cancer. Cancer Cell Int. 2018;18:164. DOI: 10.1186/s12935-018-0660-6

57. Fan Q., Yang L., Zhang X., Peng X., Wei S., Su D., et al. The emerging role of exosome-derived non-coding RNAs in cancer biology. Cancer Lett. 20181;414:107–115. DOI: 10.1016/j.canlet.2017.10.040

58. Yang H., Fu H., Xu W., Zhang X. Exosomal non-coding RNAs: a promising cancer biomarker. Clin Chem Lab Med. 2016;1;54(12):1871–9. DOI: 10.1515/cclm-2016-0029

59. Marrugo-Ramírez J., Mir M., Samitier J. Blood-based cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy. Int J Mol Sci. 2018;19(10). DOI: 10.3390/ijms19102877

60. Coumans F.A.W., Brisson A.R., Buzas E.I., Dignat-George F., Drees E.E.E., El-Andaloussi S., et al. Methodological guidelines to study extracellular vesicles. Circ Res. 2017;120(10):1632–48. DOI: 10.1161/CIRCRESAHA.117.309417


Review

For citations:


Beylerli O.A., Gareev I.F., Pavlov V.N., Shiguang Zh., Xin Ch., Kudriashov V.V. Exosomal Long NonCoding Rnas as Cancer Biomarkers and Therapeutic Targets. Creative surgery and oncology. 2019;9(4):297-304. (In Russ.) https://doi.org/10.24060/2076-3093-2019-9-4-297-304

Views: 3424


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)