Non-Coding RNA Extraction from Nucleus Pulposus of Intervertebral Discs with Subsequent Expression Profiling
https://doi.org/10.24060/2076-3093-2020-10-2-108-114
Abstract
Background. With numerous extraction protocols for total RNA and RNA fractions, like microRNA (miRNA) and long non-coding RNA (lncRNA), available for various cell and tissue types, obtaining a high quantitative and qualitative yield from some special material, such as the nucleus pulposus, remains challenging. Nucleus pulposus is troublesome to manage in common RNA isolation protocols due to low cell content and high biopolymer concentrations, including proteoglycans and glycoproteins, which impair overall purity and yield. A major lack of reproducible methods for total and fraction RNA isolation directly from the nucleus pulposus impedes effective real-time PCR applications for downstream miRNA and lncRNA expression profiling in the course of intervertebral disc degeneration. In this study, we exploit the collagenase type II lytic properties to facilitate extraction of total and fraction RNA from the nucleus pulposus and compare results with the standard RNA isolation method.
Materials and methods. Nucleus pulposus samples (n = 8) were obtained from September 2017 to December 2018 from patients with herniated discs in the lumbosacral spine diagnosed during surgery. Equal portions of samples were processed with the standard and original RNA isolation protocols.
Results and discussion. Th e enzymatic lysis method for total and fraction RNA isolation from the nucleus pulposus of intervertebral discs demonstrated excellent integrity and high purity. No protein, polysaccharide or collagen contamination was detected.
Conclusion. Th e method reported allows an improved quantitative and qualitative total and fraction RNA yield from the nucleus pulposus of intervertebral discs. Th e method can be used in future research on miRNA and lncRNA expression profiling with real-time PCR by improving the average cycle threshold value.
About the Authors
I. F. GareevRussian Federation
Ilgiz F. Gareev — Department of Oncology with courses of oncology and pathological anatomy for Advanced Professional Education.
O. A. Beylerli
Russian Federation
Ozal A. Beylerli — Department of Oncology with courses of oncology and pathological anatomy for Advanced Professional Education.
G. Yang
Russian Federation
Guang Yang — PhD, Department of Neurosurgery.
D. Zhang
Russian Federation
Daming Zhang — PhD, Department of Neurosurgery.
References
1. Li J., Liu C. Coding or noncoding, the converging concepts of RNAs. Front Genet. 2019;10:496. DOI: 10.3389/fgene.2019.00496
2. Lu T.X., Rothenberg M.E. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–7. DOI: 10.1016/j.jaci.2017.08.034
3. Mohr A.M., Mott J.L. Overview of microRNA biology. Semin Liver Dis. 2015;35(1):3–11. DOI: 10.1055/s-0034-1397344
4. Jathar S., Kumar V., Srivastava J., Tripathi V. Technological Developments in lncRNA Biology. Adv Exp Med Biol. 2017;1008:283–323. DOI: 10.1007/978-981-10-5203-3_10
5. Begolli R., Sideris N., Giakountis A. LncRNAs as chromatin regulators in cancer: from molecular function to clinical potential. Cancers (Basel). 2019;11(10):E1524. DOI: 10.3390/cancers11101524
6. Marchese F.P., Huarte M. Long non-coding RNAs and chromatin modifi ers: their place in the epigenetic code. Epigenetics. 2014;9(1):21–6. DOI: 10.4161/epi.27472
7. Li M., Duan L., Li Y., Liu B. Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases. Life Sci. 2019;233:116440. DOI: 10.1016/j.lfs.2019.04.066
8. Harries L.W. RNA biology provides new therapeutic targets for human disease. Front Genet. 2019;10:205. DOI: 10.3389/fgene.2019.00205
9. Cao M.X., Tang Y.L., Zhang W.L., Tang Y.J., Liang X.H. Non-coding RNAs as Regulators of Lymphangiogenesis in Lymphatic Development, Infl ammation, and Cancer Metastasis. Front Oncol. 2019;9:916. DOI: 10.3389/fonc.2019.00916
10. Li Z., Li X., Chen C., Li S., Shen J., Tse G., et al. Long non-coding RNAs in nucleus pulposus cell function and intervertebral disc degeneration. Cell Prolif. 2018;51(5):e12483. DOI: 10.1111/cpr.12483
11. Wang C., Wang W.J., Yan Y.G., Xiang Y.X., Zhang J., Tang Z.H., et al. MicroRNAs: new players in intervertebral disc degeneration. Clin Chim Acta. 2015;450:333–41. DOI: 10.1016/j.cca.2015.09.011
12. Bowles R.D., Setton L.A. Biomaterials for intervertebral disc regeneration and repair. Biomaterials. 2017;129:54–67. DOI: 10.1016/j.
13. biomaterials.2017.03.013
14. Navone S.E., Marfi a G., Giannoni A., Beretta M., Guarnaccia L., Gualtierotti R., et al. Infl ammatory mediators and signalling pathways controlling intervertebral disc degeneration. Histol Histopathol. 2017;32(6):523–42. DOI: 10.14670/HH-11-846
15. Zhao R., Liu W., Xia T., Yang L. Disordered mechanical stress and tissue engineering therapies in intervertebral disc degeneration. Polymers (Basel). 2019;11(7):E1151. DOI: 10.3390/polym11071151
16. Wang H.Q., Yu X.D., Liu Z.H., Cheng X., Samartzis D., Jia L.T., et al. Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3. J Pathol. 2011;225(2):232–42. DOI: 10.1002/path.2931
17. Wang T., Li P., Ma X., Tian P., Han C., Zang J., et al. MicroRNA-494 inhibition protects nucleus pulposus cells from TNF-alpha-induced apoptosis by targeting JunD. Biochimie. 2015;115:1–7. DOI: 10.1016/j.biochi.2015.04.011
18. Yu X., Li Z., Shen J., Wu W.K., Liang J., Weng X., et al. MicroRNA-10b promotes nucleus pulposus cell proliferation through RhoC-Akt pathway by targeting HOXD10 in intervetebral disc degeneration. PLoS One. 2013;8(12):e83080. DOI: 10.1371/journal.pone.0083080
19. Liu G., Cao P., Chen H., Yuan W., Wang J., Tang X. MiR-27a regulates apoptosis in nucleus pulposus cells by targeting PI3K. PLoS One. 2013;8(9):e75251. DOI: 10.1371/journal.pone.0075251
20. Tsirimonaki E., Fedonidis C., Pneumaticos S.G., Tragas A.A., Michalopoulos I., Mangoura D. PKC epsilon signalling activates ERK1/2, and regulates aggrecan, ADAMTS5, and miR377 gene expression in human nucleus pulposus cells. PLoS ONE. 2013;8:e82045. DOI: 10.1371/journal.pone.0082045
21. Wang X., Zou M., Li J., Wang B., Zhang Q., Liu F., et al. LncRNA H19 targets miR-22 to modulate HO-induced deregulation in nucleus pulposus cell senescence, proliferation, and ECM synthesis through Wnt signaling. J Cell Biochem. 2018;119(6):4990–5002. DOI: 10.1002/jcb.26738
22. Wang K., Song Y., Liu W., Wu X., Zhang Y., Li S., et al. Th e noncoding RNA linc-ADAMTS5 cooperates with RREB1 to protect from intervertebral disc degeneration through inhibiting ADAMTS5 expression. Clin Sci (Lond). 2017;131(10):965–79. DOI: 10.1042/CS20160918
23. Ruan Z., Ma H., Li J., Liu H., Jia H., Li F. Th e long non-coding RNA NEAT1 contributes to extracellular matrix degradation in degenerative human nucleus pulposus cells. Exp Biol Med (Maywood). 2018;243(7):595–600. DOI: 10.1177/1535370218760774
24. Xi Y., Jiang T., Wang W., Yu J., Wang Y., Wu X., et al. Long non-coding HCG18 promotes intervertebral disc degeneration by sponging miR- 146a-5p and regulating TRAF6 expression. Sci Rep. 2017;7(1):13234. DOI: 10.1038/s41598-017-13364-6.25
25. Le Bleu H.K., Kamal F.A., Kelly M., Ketz J.P., Zuscik M.J., Elbarbary R.A. Extraction of high-quality RNA from human articular cartilage. Anal Biochem. 2017;518:134–8. DOI: 10.1016/j.ab.2016.11.018
26. Patry J., Blanchette V. Enzymatic debridement with collagenase in wounds and ulcers: a systematic review and meta-analysis. Int Wound J. 2017;14(6):1055–65. DOI: 10.1111/iwj.12760
Review
For citations:
Gareev I.F., Beylerli O.A., Yang G., Zhang D. Non-Coding RNA Extraction from Nucleus Pulposus of Intervertebral Discs with Subsequent Expression Profiling. Creative surgery and oncology. 2020;10(2):108-114. (In Russ.) https://doi.org/10.24060/2076-3093-2020-10-2-108-114