Preview

Creative surgery and oncology

Advanced search

MicroRNAs as Biomarkers and Therapeutic Targets for Medulloblastomas

https://doi.org/10.24060/2076-3093-2020-10-4-311-318

Abstract

Medulloblastomas (MBs) are the most common malignant neoplasms of the central nervous system in children. MB is a persistent disease associated with a high level of morbidity and mortality, thus requiring aggressive therapeutical approaches. Clinical and histological features of tumours are used for their classification and prognosis. Despite significant progress in the study of MB, its molecular basis remains to be fully understood.  MicroRNAs (miRNAs) are short non­coding RNAs (ncRNAs) that function as key regulators of various biological processes, including the development, differentiation, metabolism, proliferation and apoptosis of cells. MiRNAs regulate genes at the post­transcriptional level. Aberrant expression of miRNAs correlates with various cancers. This altered expression may result from mutation, methylation, deletion and amplification of miRNA coding regions. In this review, we discuss the role of miRNAs in MB and their potential use in the diagnosis, prognosis and treatment of this malignant tumour. As a fast­growing field in biomedical sciences, miRNAs studies will revolutionize the treatment of MB.

About the Authors

O. A. Beylerli
Bashkir State Medical University
Russian Federation
Department of Oncology with Courses of Oncology and Pathological Anatomy for Advanced Professional Education

Ufa


I. F. Gareev
Bashkir State Medical University
Russian Federation

Cand. Sci. (Med.), Department of Oncology with Courses of Oncology and Pathological Anatomy for Advanced
Professional Education  

Ufa



A. B. Alyshov
Republican Cardiology Centre
Russian Federation
Ufa


V. V. Kudriashov
West China Hospital of Sichuan University
China
Department of Gastroenterology

 Chengdu, Sichuan province


References

1. Wang J., Garancher A., Ramaswamy V., Wechsler-Reya R.J. Medulloblastoma: from molecular subgroups to molecular targeted therapies. Annu Rev Neurosci. 2018;41:207–32. DOI: 10.1146/annurev-neuro-070815-013838

2. Udaka Y.T., Packer R.J. Pediatric brain tumors. Neurol Clin. 2018;36(3):533–56. DOI: 10.1016/j.ncl.2018.04.009

3. Chamdine O., Elhawary G.A.S., Alfaar A.S., Qaddoumi I. The incidence of brainstem primitive neuroectodermal tumors of childhood based on SEER data. Childs Nerv Syst. 2018;34(3):431–9. DOI: 10.1007/s00381-017-3687-4

4. Chevignard M., Câmara-Costa H., Doz F, Dellatolas G. Core deficits and quality of survival after childhood medulloblastoma: a review. Neurooncol Pract. 2017;4(2):82–97. DOI: 10.1093/nop/npw013

5. Srivastava V.K., Nalbantoglu J. The cellular and developmental biology of medulloblastoma: current perspectives on experimental therapeutics. Cancer Biol Ther. 2010;9:843–52. DOI: 10.4161/cbt.9.11.11785

6. Kim W., Choy W., Dye J., Nagasawa D., Safaee M., Fong B., et al. The tumor biology and molecular characteristics of medulloblastoma identifying prognostic factors associated with survival outcomes and prognosis. J Clin Neurosci. 2011;18:886–90. DOI: 10.1016/j.jocn.2011.01.001

7. Tarmaev A.A., Beylerli O.A. MiRNAs as promising biomarkers in cancer. HERALD of North-Western State Medical University named after I.I. Mechnikov. 2019;11(3):5–12 (In Russ.). DOI: 10.17816/mechnikov20191135-12

8. Beylerli O.A., Gareev I.F. Micro-RNP as therapeutic targets for neuroblastomas. Innovative medicine of Kuban. 2019;(4):66–71 (In Russ.). DOI: 10.35401/2500-0268-2019-16-4-66-71

9. Gareev I.F., Beylerli O.A. A study of the role of microRNA in pituitary adenoma. Advances in Molecular Oncology. 2018;5(2):8–15 (In Russ.).

10. Zhan S., Wang Y., Chen X. RNA virus-encoded microRNAs: biogenesis, functions and perspectives on application. ExRNA. 2020;2(1):15. DOI: 10.1186/s41544-020-00056-z

11. Bader A.G., Brown D., Stoudemire J., Lammers P. Developing therapeutic microRNAs for cancer. Gene Ther. 2011;18:1121–6. DOI: 10.1038/gt.2011.79

12. Lin K., Farahani M., Yang Y., Johnson G.G., Oates M., Atherton M., et al. Loss of MIR15A and MIR16-1 at 13q14 is associated with increased TP53 mRNA, de-repression of BCL2 and adverse outcome in chronic lymphocytic leukaemia. Br J Haematol. 2014;167(3):346–55. DOI: 10.1111/bjh.13043

13. Svoronos A.A., Engelman D.M., Slack F.J. OncomiR or tumor suppressor? The duplicity of MicroRNAs in cancer. Cancer Res. 2016;76(13):3666–70. DOI: 10.1158/0008-5472.CAN-16-0359

14. Paliouras A.R., Monteverde T., Garofalo M. Oncogene-induced regulation of microRNA expression: Implications for cancer initiation, progression and therapy. Cancer Lett. 2018;421:152–60. DOI: 10.1016/j.canlet.2018.02.029

15. Calin G.A., Sevignani C., Dumitru C.D., Hyslop T., Noch E., Yendamuri S., et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101:2999–3004. DOI: 10.1073/pnas.0307323101

16. Piao Y., Piao M., Ryu K.H. Multiclass cancer classification using a feature subset-based ensemble from microRNA expression profiles. Comput Biol Med. 2017;80:39–44. DOI: 10.1016/j.compbiomed.2016.11.008

17. Yang Y., Mei Q. miRNA signature identification of retinoblastoma and the correlations between differentially expressed miRNAs during retinoblastoma progression. Mol Vis. 2015;21:1307–17. PMID: 26730174

18. Yanaihara N., Caplen N., Bowman E., Seike M., Kumamoto K., Yi M., et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98. DOI: 10.1016/j.ccr.2006.01.025

19. Pichler M., Winter E., Stotz M., Eberhard K., Samonigg H., Lax S., et al. Down-regulation of KRAS-interacting miRNA-143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer. Br J Cancer. 2012;106:1826–32. DOI: 10.1038/bjc.2012.175

20. Zhi F., Chen X., Wang S., Xia X., Shi Y., Guan W., et al. The use of hsa-miR-21, hsa-miR-181b and hsa-miR-106a as prognostic indicators of astrocytoma. Eur J Cancer. 2010;46:1640–9. DOI: 10.1016/j.ejca.2010.02.003

21. Giovannetti E., Funel N., Peters G.J., Del Chiaro M., Erozenci L.A., Vasile E., et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 2010;70:4528–38. DOI: 10.1158/0008-5472.CAN-09-4467

22. Komori T. The 2016 WHO classification of tumours of the central nervous system: the major points of revision. Neurol Med Chir (Tokyo). 2017;57(7):301–11. DOI: 10.2176/nmc.ra.2017-0010

23. Ries L.A.G., Smith M.A., Gurney J.G., Linet M., Tamra T., Young J.L., et al. (eds). Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. National Cancer Institute: Bethesda; 1999.

24. Casciati A., Tanori M., Manczak R., Saada S., Tanno B., Giardullo P., et al. Human medulloblastoma cell lines: investigating on cancer stem cell-like phenotype. Cancers (Basel). 2020;12(1):226. DOI: 10.3390/cancers12010226

25. Thompson M.C., Fuller C., Hogg T.L., Dalton J., Finkelstein D., Lau C.C., et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol. 2006;24:1924–31. DOI: 10.1200/JCO.2005.04.4974

26. Kool M., Koster J., Bunt J., Hasselt N.E., Lakeman A., van Sluis P., et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One. 2008;3:e3088. DOI: 10.1371/journal.pone.0003088

27. Northcott P.A., Korshunov A., Witt H., Hielscher T., Eberhart C.G., Mack S., et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2011;29:1408–14. DOI: 10.1200/JCO.2009.27.4324

28. Remke M., Hielscher T., Korshunov A., Northcott P.A., Bender S., Kool M., et al. FSTL5 is a marker of poor prognosis in non-WNT/nonSHH medulloblastoma. J Clin Oncol. 2011;29:3852–61. DOI: 10.1200/JCO.2011.36.2798

29. Taylor M.D., Northcott P.A., Korshunov A., Remke M., Cho Y.J., Clifford S.C., et al. Molecular subgroups of medulloblastoma: The current consensus. Acta Neuropathol. 2012;123:465–72. DOI: 10.1007/s00401-011-0922-z

30. Remke M., Ramaswamy V., Taylor M.D. Medulloblastoma molecular dissection: The way toward targeted therapy. Curr Opin Oncol. 2013;25:674–81. DOI: 10.1097/CCO.0000000000000008

31. Vidal D.O., Marques M.M., Lopes L.F., Reis R.M. The role of microRNAs in medulloblastoma. J Pediatr Hematol Oncol. 2013;30:367–78. DOI: 10.3109/08880018.2013.783890

32. Cho Y.J., Tsherniak A., Tamayo P., Santagata S., Ligon A., Greulich H., et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol. 2011;29(11):1424–30. DOI: 10.1200/JCO.2010.28.5148

33. Northcott P.A., Fernandez L.A., Hagan J.P., Ellison D.W., Grajkowska W., Gillespie Y., et al. The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res. 2009;69(8):3249–55. DOI: 10.1158/0008-5472.CAN-08-4710

34. Murphy B.L., Obad S., Bihannic L., Ayrault O., Zindy F., Kauppinen S., et al. Silencing of the miR-17~92 cluster family inhibits medulloblastoma progression. Cancer Res. 2013;73(23):7068–78. DOI: 10.1158/0008-5472.CAN-13-0927

35. Zindy F., Kawauchi D., Lee Y., Ayrault O., Merzoug L.B., McKinnon P.J., et al. Role of the miR-17~92 cluster family in cerebellar and medulloblastoma development. Biol Open. 2014;3(7):597–605. DOI: 10.1242/bio.20146734

36. Pal R., Greene S. microRNA-10b is overexpressed and critical for cell survival and proliferation in medulloblastoma. Plos one. 2015;10(9):e0137845. DOI: 10.1371/journal.pone.0137845

37. Grunder E., D’Ambrosio R., Fiaschetti G., Abela L., Arcaro A., Zuzak T., et al. MicroRNA-21 suppression impedes medulloblastoma cell migration. Eur J Cancer. 2011;47(16):2479–90. DOI: 10.1016/j.ejca.2011.06.041

38. Weeraratne S.D., Amani V., Teider N., Pierre-Francois J., Winter D., Kye M.J., et al. Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathol. 2012;123(4):539–52. DOI: 10.1007/s00401-012-0969-5

39. Bai A.H., Milde T., Remke M., Rolli C.G., Hielscher T., Cho Y.J., et al. MicroRNA-182 promotes leptomeningeal spread of non-sonic hedgehog-medulloblastoma. Acta Neuropathol. 2012;123(4):529–38. DOI: 10.1007/s00401-011-0924-x

40. Zhang Z., Li S., Cheng S.Y. The miR-183~96~182 cluster promotes tumorigenesis in a mouse model of medulloblastoma. J Biomed Res. 2013;27(6):486–94. DOI: 10.7555/JBR.27.20130010

41. Weeraratne S.D., Amani V., Neiss A., Teider N., Scott D.K., Pomeroy S.L., et al. miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma. Neuro Oncol. 2011;13:165–75. DOI: 10.1093/neuonc/noq179

42. de Antonellis P., Medaglia C., Cusanelli E., Andolfo I., Liguori L., De Vita G., et al. MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One. 2011;6:e24584. DOI: 10.1371/journal.pone.0024584

43. Pierson J., Hostager B., Fan R., Vibhakar R. Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol. 2008;90:1–7. DOI: 10.1007/s11060-008-9624-3

44. Li K.K., Pang J.C., Ching A.K., Wong C.K., Kong X., Wang Y., et al. miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol. 2009;40:1234–43. DOI: 10.1016/j.humpath.2009.02.003

45. Ferretti E., De Smaele E., Miele E., Laneve P., Po A., Pelloni M., et al. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J. 2008;27:2616–27. DOI: 10.1038/emboj.2008.172

46. Venkataraman S., Alimova I., Fan R., Harris P., Foreman N., Vibhakar R. MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PLoS One. 2010;5:e10748. DOI:0. 1371/journal.pone.0010748

47. Gokhale A., Kunder R., Goel A., Sarin R., Moiyadi A., Shenoy A., et al. Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway. J Cancer Res Ther. 2010;6:521–9. DOI: 10.4103/0973-1482.77072

48. Garzia L., Andolfo I., Cusanelli E., Marino N., Petrosino G., De Martino D., et al. MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS One. 2009;4:e4998. DOI: 10.1371/journal.pone.0004998


Review

For citations:


Beylerli O.A., Gareev I.F., Alyshov A.B., Kudriashov V.V. MicroRNAs as Biomarkers and Therapeutic Targets for Medulloblastomas. Creative surgery and oncology. 2020;10(4):311-318. (In Russ.) https://doi.org/10.24060/2076-3093-2020-10-4-311-318

Views: 4625


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)