Antitumour Activity of Dehydroxymethylepoxyquinomycin (DHMEQ): a Literature Review
https://doi.org/10.24060/2076-3093-2021-11-1-68-75
Abstract
Carcinogenesis research uncovers new pathogenesis links as vulnerable targets of effective antitumour therapies. Among the key mediators of immune response, cell proliferation, cell apoptosis and inflammation is transcription factor NF-κB. Misregulation of an NF-κB-dependent pathway is found in solid and haematopoietic tumour cells. One of the best known NF-κB functions is expression regulation of genes involved in the apoptosis inhibition or activation and survival in both intact and malignant cells. The NF-κB-mediated pathways’ involvement in carcinogenesis, angiogenesis and tumour resistance to chemo- and radiotherapies makes this factor a promising target for drug anti-cancer interventions. This review summarises evidence on the antitumour and anti-inflammatory activity of a high-potent and specific low molecular-weight NF-κB inhibitor, dehydroxymethylhepoxyquinomycin (DHMEQ), as a candidate therapeutic agent in treatment for variant malignancies.
About the Authors
K. UmezawaRussian Federation
Kazuo Umezawa — Ph.D., Prof., Scientific Advisor
Ufa
Sh. Kh. Gantsev
Russian Federation
Shamil Kh. Gantsev — Dr. Sci. (Med.), Prof., Department of Oncology with Courses of Oncology and Pathological Anatomy for Advanced Professional Education, Principal Investigator
Ufa
Sh. R. Kzyrgalin
Russian Federation
Shamil R. Kzyrgalin — Cand. Sci. (Med.), Assoc. Prof., Department of Oncology with Courses of Oncology and Pathological Anatomy for Advanced Professional Education
Ufa
R. S. Yamidanov
Russian Federation
Renat S. Yamidanov — Cand. Sci. (Biol.), Senior Researcher
Ufa
R. A. Amirov
Russian Federation
Rustem A. Amirov — specialist
Ufa
E. I. Zhuk
Russian Federation
Ekaterina I. Zhuk — Sixth-year-student, Faculty of General Medicine
Ufa
References
1. Kaprin A.D., Starinsky V.V., Shakhzadova A.O. (eds). Malignant neoplasms in Russia in 2019 (morbidity and mortality). Moscow: National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation; 2020. 252 p.
2. Baud V., Karin M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 2009;8(1):33–40. DOI: 10.1038/nrd2781
3. Nakanishi C., Toi M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer. 2005;5(4):297–309. DOI: 10.1038/nrc1588
4. Pipex pharmaceuticals announces presentation of phase I/II clinical trial results of COPREXA (Oral Tetrathiomolybdate) for the Treatment of Refractory Idiopathic Pulmonary Fibrosis (IPF) [cited 2021 Mar 17]. Available from: https://pipelinereview.com/index.php/2007052612034/Small-Molecules/Pipex-Pharmaceuticals-Announces-Presentation-of-Phase-I/II-Clinical-Trial-Results-of-COPREXA-Oral-Tetrathiomolybdate-for-the-Treatment-of-Refractory-Idiopathic-Pulmonary.html
5. Dudnyk V.M., Moroz L.V., Zaichko N.V., Kutsak O.V. Content of interleukins-4, 6 and nuclear transcription factor NF-κB in children with atopic bronchial asthma depending on ILE50Val polymorphism of IL4RA gene, severity of the disease course and level of its control. Zaporozhye Medical Journal. 2019;21(1):72–7 (In Russ.). DOI: 10.14739/2310-1210.2019.1.155818
6. Kaneda A., Gantsev S.K., Umezawa K. Inhibition of cellular invasion and induction of anoikis in mouse melanoma cells by an anti-inflammatory agent DTCM-glutarimide. Creative surgery and oncology. 2012;(3):4–9 (In Russ.). DOI: 10.24060/2076-3093-2012-0-3-4-9
7. Ariga A., Namekawa J., Matsumoto N., Inoue J., Umezawa K. Inhibition of tumor necrosis factor-alpha -induced nuclear translocation and activation of NF-kappa B by dehydroxymethylepoxyquinomicin. J Biol Chem. 2002;277(27):24625–30. DOI: 10.1074/jbc.M112063200
8. Matsumoto N., Ariga A., To-e S., Nakamura H., Agata N., Hirano S., et al. Synthesis of NF-kappaB activation inhibitors derived from epoxyquinomicin C. Bioorg Med Chem Lett. 2000;10(9):865–9. DOI: 10.1016/s0960-894x(00)00114-1
9. Suzuki Y., Sugiyama C., Ohno O., Umezawa K. Preparation and biological activities of optically active dehydroxymethylepoxyquinomicin, a novel NF-kB inhibitor. Tetrahedron. 2004;60:7061–6. DOI: 10.1016/j.tet.2004.01.103
10. Umezawa K. Possible role of peritoneal NF-κB in peripheral inflammation and cancer: lessons from the inhibitor DHMEQ. Biomed Pharmacother. 2011;65(4):252–9. DOI: 10.1016/j.biopha.2011.02.003
11. Spirina L.V., Chigevskaya S.Yu., Kondakova I.V., Choynzonov E.L. The relationship of the braf-V600E mutation with the expression of transcriptional, growth factors, components of the AKT / m-TOR signaling pathway in the tissue of papillary thyroid cancer. Problems in oncology. 2019;65(4):608–13 (In Russ.). DOI: 10.37469/0507-3758-2019-65-4-608-613
12. Bayet-Robert M., Kwiatkowski F., Leheurteur M., Gachon F., Planchat E., Abrial C., et al. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol Ther. 2010;9(1):8–14. DOI: 10.4161/cbt.9.1.10392
13. Gershtein E.S., Scherbakov A.M., Platova A.M., Tchemeris G.Yu., Letyagin V.P., Kushlinskii N.E. The expression and DNA-binding activity of NF-κB nuclear transcription factor in the tumors of patients with breast cancer. Bulletin of Experimental Biology and Medicine. 2010;150(1):71–4. DOI: 10.1007/s10517-010-1072-3
14. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441(7092):431–6. DOI: 10.1038/nature04870
15. Schauer I.G., Zhang J., Xing Z., Guo X., Mercado-Uribe I., Sood A.K., et al. Interleukin-1β promotes ovarian tumorigenesis through a p53/NF-κB-mediated inflammatory response in stromal fibroblasts. Neoplasia. 2013;15(4):409–20. DOI: 10.1593/neo.121228
16. Zhang W., Grivennikov S.I. Top Notch cancer stem cells by paracrine NF-κB signaling in breast cancer. Breast Cancer Res. 2013;15(5):316. DOI: 10.1186/bcr3565
17. Yang X., Wang H., Jiao B. Mammary gland stem cells and their application in breast cancer. Oncotarget. 2017;8(6):10675–91. DOI: 10.18632/oncotarget.12893
18. Castagnoli L., Ghedini G.C., Koschorke A., Triulzi T., Dugo M., Gasparini P., et al. Pathobiological implications of the d16HER2 splice variant for stemness and aggressiveness of HER2-positive breast cancer. Oncogene. 2017;36(12):1721–32. DOI: 10.1038/onc.2016.338
19. Merkhofer E.C., Cogswell P., Baldwin A.S. Her2 activates NF-kappaB and induces invasion through the canonical pathway involving IKKalpha. Oncogene. 2010;29(8):1238–48. DOI: 10.1038/onc.2009.410
20. Shostak K., Chariot A. NF-κB, stem cells and breast cancer: the links get stronger. Breast Cancer Res. 2011;13(4):214. DOI: 10.1186/bcr2886
21. Lebedeva E.S., Bagaev A.V., Chulkina M.M., Pichugin A.V., Ataullakhanov R.I. NF-kB-, but not mapk-signaling pathway determines synergistic response of macrophages to the simultaneous activation of two types receptors TLR4 + NOD2 or TLR9 + NOD2. Immunology. 2017;38(2):76–82 (In Russ.). DOI: 10.18821/0206-4952-2017-38-2-76-82
22. Nishioka C., Ikezoe T., Jing Y., Umezawa K., Yokoyama A. DHMEQ, a novel nuclear factor-kappaB inhibitor, induces selective depletion of alloreactive or phytohaemagglutinin-stimulated peripheral blood mononuclear cells, decreases production of T helper type 1 cytokines, and blocks maturation of dendritic cells. Immunology. 2008;124(2):198–205. DOI: 10.1111/j.1365-2567.2007.02755.x
23. Hamasaka A., Yoshioka N., Abe R., Kishino S., Umezawa K., Ozaki M., et al. Topical application of dehydroxymethylepoxyquinomicin improves allergic inflammation via NF-kappaB inhibition. J Allergy Clin Immunol. 2010;126(2):400–3. DOI: 10.1016/j.jaci.2010.05.020
24. Kodaira K., Kikuchi E., Kosugi M., Horiguchi Y., Matsumoto K., Kanai K., et al. Potent cytotoxic effect of a novel nuclear factor-kappaB inhibitor dehydroxymethylepoxyquinomicin on human bladder cancer cells producing various cytokines. Urology. 2010;75(4):805–12. DOI: 10.1016/j.urology.2009.11.048
25. Sato A., Oya M., Ito K., Mizuno R., Horiguchi Y., Umezawa K., et al. Survivin associates with cell proliferation in renal cancer cells: regulation of survivin expression by insulin-like growth factor-1, interferon-gamma and a novel NF-kappaB inhibitor. Int J Oncol. 2006;28(4):841–6. PMID: 16525632
26. Starenki D.V., Namba H., Saenko V.A., Ohtsuru A., Maeda S., Umezawa K., et al. Induction of thyroid cancer cell apoptosis by a novel nuclear factor kappaB inhibitor, dehydroxymethylepoxyquinomicin. Clin Cancer Res. 2004;10(20):6821–9. DOI: 10.1158/1078-0432.CCR-04-0463
27. Palona I., Namba H., Mitsutake N., Starenki D., Podtcheko A., Sedliarou I., et al. BRAFV600E promotes invasiveness of thyroid cancer cells through nuclear factor kappaB activation. Endocrinology. 2006;147(12):5699–707. DOI: 10.1210/en.2006-0400
28. Miyake A., Dewan M.Z., Ishida T., Watanabe M., Honda M., Sata T., et al. Induction of apoptosis in Epstein-Barr virus-infected B-lymphocytes by the NF-kappaB inhibitor DHMEQ. Microbes Infect. 2008;10(7):748–56. DOI: 10.1016/j.micinf.2008.04.002
29. Abakumova T., Gening T. O., Dolgova D., Antoneeva I., Gening T., Fedotova A. Transcription factors HIF-1 α and NF-kB of tumor tissue and ascites cells in advanced ovarian cancer. Pathological physiology and experimental therapy. 2020;64(2):30–6 (In Russ.). DOI: 10.25557/0031-2991.2020.02.30-36
30. Umezawa K., Breborowicz A., Gantsev S. Anticancer Activity of Novel NF-kappa B Inhibitor DHMEQ by Intraperitoneal Administration. Oncol Res. 2020;28(5):541–50. DOI: 10.3727/096504020X15929100013698
31. Ohsugi T., Horie R., Kumasaka T., Ishida A., Ishida T., Yamaguchi K., et al. In vivo antitumor activity of the NF-kappaB inhibitor dehydroxymethylepoxyquinomicin in a mouse model of adult T-cell leukemia. Carcinogenesis. 2005;26(8):1382–8. DOI: 10.1093/carcin/bgi095
32. Celegato M., Borghese C., Umezawa K., Casagrande N., Colombatti A., Carbone A., et al. The NF-κB inhibitor DHMEQ decreases survival factors, overcomes the protective activity of microenvironment and synergizes with chemotherapy agents in classical Hodgkin lymphoma. Cancer Lett. 2014;349(1):26–34. DOI: 10.1016/j.canlet.2014.03.030
33. Zhang H., Yang W.T., Wang Z., Yao C.M., Wang X.F., Tian Z.Q., et al. Dehydroxymethylepoxyquinomicin selectively ablates T-CAEBV cells. Front Biosci (Landmark Ed). 2015;20:502–14. DOI: 10.2741/4322
34. Watanabe M., Dewan M.Z., Taira M., Shoda M., Honda M., Sata T., et al. IkBa independent induction of NF-kB and its inhibition by DHMEQ in Hodgkin. Reed-Sternberg cells. Lab Invest. 2007;87:372–82. DOI: 10.1038/labinvest.3700528
35. Suzuki K., Aiura K., Matsuda S., Itano O., Takeuchi O., Umezawa K., et al. Combined effect of dehydroxymethylepoxyquinomicin and gemcitabine in a mouse model of liver metastasis of pancreatic cancer. Clin Exp Metastasis. 2013;30(4):381–92. DOI: 10.1007/s10585-012-9544-7
36. Marrogi A., Pass H.I., Khan M., Metheny-Barlow L.J., Harris C.C., Gerwin B.I. Human mesothelioma samples overexpress both cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (NOS2): in vitro antiproliferative effects of a COX-2 inhibitor. Cancer Res. 2000;60(14):3696–700. PMID: 10919635
37. Noguchi Y., Makino T., Yoshikawa T., Nomura K., Fukuzawa K., Matsumoto A., et al. The possible role of TNF-alpha and IL-2 in inducing tumor-associated metabolic alterations. Surg Today. 1996;26(1):36–41. DOI: 10.1007/BF00311989
38. Terekhov I.V., Nikiforov V.S., Bondar S.S., Bondar N.V., Voevodin A.A. The effect of low-intensity electromagnetic irradiation with a frequency of 1 GHz on the content of the components of the M/TOLL signaling pathway and NF-kB in mononuclear cells of whole blood. Genes and Cells. 2017;12(2):90–6. DOI: 10.23868/201707020
39. Kaur S., Singh G., Kaur K. Cancer stem cells: an insight and future perspective. J Cancer Res Ther. 2014;10(4):846–52. DOI: 10.4103/0973-1482.139264
40. Quintana E., Shackleton M., Sabel M.S., Fullen D.R., Johnson T.M., Morrison S.J. Efficient tumour formation by single human melanoma cells. Nature. 2008;456(7222):593–8. DOI: 10.1038/nature07567
41. Taussig D.C., Miraki-Moud F., Anjos-Afonso F., Pearce D.J., Allen K., Ridler C., et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood. 2008;112(3):568–75. DOI: 10.1182/blood-2007-10-118331
42. Yamamoto M., Taguchi Y., Ito-Kureha T., Semba K., Yamaguchi N., Inoue J. NF-κB non-cell-autonomously regulates cancer stem cell populations in the basal-like breast cancer subtype. Nat Commun. 2013;4:2299. DOI: 10.1038/ncomms3299
43. Mimeault M., Batra S.K. Animal models relevant to human prostate carcinogenesis underlining the critical implication of prostatic stem/progenitor cells. Biochim Biophys Acta. 2011;1816(1):25–37. DOI: 10.1016/j.bbcan.2011.03.001
44. Idowu M.O., Kmieciak M., Dumur C., Burton R.S., Grimes M.M., Powers C.N., et al. CD44(+)/CD24(-/low) cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Hum Pathol. 2012;43(3):364–73. DOI: 10.1016/j.humpath.2011.05.005
45. Noma N., Simizu S., Kambayashi Y., Kabe Y., Suematsu M., Umezawa K. Involvement of NF-κB-mediated expression of galectin-3-binding protein in TNF-α-induced breast cancer cell adhesion. Oncol Rep. 2012;27(6):2080–4. DOI: 10.3892/or.2012.1733
46. Al-Hajj M., Wicha M.S., Benito-Hernandez A., Morrison S.J., Clarke M.F. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100(7):3983–8. DOI: 10.1073/pnas.0530291100
47. Shipitsin M., Campbell L.L., Argani P., Weremowicz S., Bloushtain-Qimron N., Yao J., et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259–73. DOI: 10.1016/j.ccr.2007.01.013
48. Murohashi M., Hinohara K., Kuroda M., Isagawa T., Tsuji S., Kobayashi S., et al. Gene set enrichment analysis provides insight into novel signalling pathways in breast cancer stem cells. Br J Cancer. 2010;102(1):206–12. DOI: 10.1038/sj.bjc.6605468
49. Dai J., Lu Y., Roca H., Keller J.M., Zhang J., McCauley L.K., et al. Immune mediators in the tumor microenvironment of prostate cancer. Chin J Cancer. 2017;36(1):29. DOI: 10.1186/s40880-017-0198-3
50. Nakajima Y., DelliPizzi A.M., Mallouh C., Ferreri N.R. TNF-mediated cytotoxicity and resistance in human prostate cancer cell lines. Prostate. 1996;29(5):296–302. DOI: 10.1002/(SICI)1097-0045(199611)29:5<296::AID-PROS4>3.0.CO;2-8
Review
For citations:
Umezawa K., Gantsev Sh.Kh., Kzyrgalin Sh.R., Yamidanov R.S., Amirov R.A., Zhuk E.I. Antitumour Activity of Dehydroxymethylepoxyquinomycin (DHMEQ): a Literature Review. Creative surgery and oncology. 2021;11(1):68-75. (In Russ.) https://doi.org/10.24060/2076-3093-2021-11-1-68-75