Hepatocellular Carcinoma: Aetiology and Mechanisms of Development. A Literature Review
https://doi.org/10.24060/2076-3093-2022-12-2-139-150
Abstract
Liver cancer remains a global challenge of healthcare, with the incidence growing worldwide. According to various authors, over 1 million patients will be diagnosed with liver cancer each year by 2025. The molecular pathogenesis of HCC varies with respect to genotoxic lesions and aetiologies. Although our understanding of the HCC pathophysiology and drivers tends to improve, it is still distant from translation into clinical practice. About 25 % of HCC cases are associated with variant mutations. HCC pathophysiology is a complex multi-step process. The interaction of various factors underlies the early stages of malignant hepatocyte transformation towards the development of HCC. Overall, about 20–25 % of HCC patients have at least one potential driver mutation. Obesity should also be noted as being associated with a higher risk of HCC and various other cancers. Despite many issues in the HCC pathogenesis being already known, the unresolved questions remain. Modern molecular genetic diagnostics and animal modelling of malignant tumours are expanding our horizons of knowledge in this field.
About the Authors
K. V. MenshikovRussian Federation
Cand. Sci. (Med.), Assoc. Prof., Department of Oncology with courses of Oncology and Pathological Anatomy for Advanced Professional Education, Chemotherapy Unit
Ufa
A. V. Sultanbaev
Russian Federation
Cand. Sci. (Med.), Anticancer Drug Therapy Unit
Ufa
Sh. I. Musin
Russian Federation
Cand. Sci. (Med.), Surgery Unit No. 6
Ufa
I. R. Rakhmatullina
Russian Federation
Dr. Sci. (Med.), Prof., Department of Oncology with courses of Oncology and Pathological Anatomy for Advanced Professional Education
Ufa
I. A. Menshikova
Russian Federation
Cand. Sci. (Med.), Assoc. Prof., Department of Biological Chemistry
Ufa
R. R. Abdeev
Russian Federation
Cand. Sci. (Med.), Surgery Unit No. 1
Ufa
N. I. Sultanbaeva
Russian Federation
Anticancer Drug Therapy Unit No. 1
Ufa
E. V. Popova
Russian Federation
Outpatient Anticancer Drug Therapy Unit
Ufa
G. A. Serebrennikov
Russian Federation
Department of Oncology with courses of Oncology and Pathological Anatomy for Advanced Professional Education
Ufa
References
1. Llovet J.M., Kelley R.K., Villanueva A., Singal A.G., Pikarsky E., Roayaie S., et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6. DOI: 10.1038/s41572-020-00240-3
2. Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380(15):1450–62. DOI: 10.1056/NEJMra1713263
3. Cancer Online. International Agency for Research on Cancer. GLOBOCAN 2018. Available at: https://gco.iarc.fr/today/online-analysismap?v=2020&mode=population&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=11&type=0&statistic=5&prevalence=0&population_groupearth&color_palette=default&map_scale=quantile&map_nb_colors=5&continent=0&rotate= %255B10 %252C0 %255D (accessed 20 July 2020).
4. Akinyemiju T., Abera S., Ahmed M., Alam N., Alemayohu M.A., Allen C., et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015. JAMA Oncol. 2017;3(12):1683–91. DOI: 10.1001/jamaoncol.2017.3055
5. Kanwal F., Kramer J., Asch S.M., Chayanupatkul M., Cao Y., El-Serag H.B. Risk of hepatocellular cancer in HCV patients treated with directacting antiviral agents. Gastroenterology. 2017;153(4):996–1005.e1. DOI: 10.1053/j.gastro.2017.06.012
6. Estes C., Razavi H., Loomba R., Younossi Z., Sanyal A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67(1):123–33. DOI: 10.1002/hep.29466
7. Schulze K., Imbeaud S., Letouzé E., Alexandrov L.B., Calderaro J., Rebouissou S., et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47(5):505–11. DOI: 10.1038/ng.3252
8. Llovet J.M., Montal R., Sia D., Finn R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15:599–616.
9. Zucman-Rossi J., Villanueva A., Nault J.C., Llovet J.M. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology. 2015;149(5):1226–39.e4. DOI: 10.1053/j.gastro.2015.05.061
10. Anstee Q.M., Reeves H.L., Kotsiliti E., Govaere O., Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16(7):411–28. DOI: 10.1038/s41575-019-0145-7
11. Friedman S.L., Neuschwander-Tetri B.A., Rinella M., Sanyal A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22. DOI: 10.1038/s41591-018-0104-9
12. European Association for the Study of the Liver. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236. DOI: 10.1016/j.jhep.2018.03.019
13. Marrero J.A., Kulik L.M., Sirlin C.B., Zhu A.X., Finn R.S., Abecassis M.M., et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the study of liver diseases. Hepatology. 2018;68(2):723–50. DOI: 10.1002/hep.29913
14. Llovet J.M., De Baere T., Kulik L., Haber P.K., Greten T.F., Meyer T., et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18(5):293–313. DOI: 10.1038/s41575-020-00395-0
15. Tabrizian P., Holzner M., Halazun K., Agopian V.G., Busuttil R.W., Yao F., et al. A US multicenter analysis of 2529 HCC patients undergoing liver transplantation: 10-year outcome assessing the role of down-staging to within Milan criteria [abstract 15]. Hepatology. 2019;70:10–1.
16. Llovet J.M., Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology. 2003;37(2):429–42. DOI: 10.1053/jhep.2003.50047
17. Salem R., Gordon A.C., Mouli S., Hickey R., Kallini J., Gabr A., et al. Y90 Radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology. 2016;151(6):1155–63.e2. DOI: 10.1053/j.gastro.2016.08.029
18. Finn R.S., Qin S., Ikeda M., Galle P.R., Ducreux M., Kim T.Y., et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020;382(20):1894–905. DOI: 10.1056/NEJMoa1915745
19. Llovet J.M., Ricci S., Mazzaferro V., Hilgard P., Gane E., Blanc J.F., et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90. DOI: 10.1056/NEJMoa0708857
20. Kudo M., Finn R.S., Qin S., Han K.H., Ikeda K., Piscaglia F., et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 noninferiority trial. Lancet. 2018;391(10126):1163–73. DOI: 10.1016/S0140-6736(18)30207-1
21. Bruix J., Qin S., Merle P., Granito A., Huang Y.H., Bodoky G., et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66. DOI: 10.1016/S0140-6736(16)32453-9
22. Shlomai A., Leshno M., Goldstein D.A. Cabozantinib for patients with advanced hepatocellular carcinoma: a cost-effectiveness analysis. Therap Adv Gastroenterol. 2019;12:1756284819878304. DOI: 10.1177/1756284819878304
23. Zhu A.X., Kang Y.K., Yen C.J., Finn R.S., Galle P.R., Llovet J.M., et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(2):282–96. DOI: 10.1016/S1470-2045(18)30937-9
24. El-Khoueiry A.B., Sangro B., Yau T., Crocenzi T.S., Kudo M., Hsu C., et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502. DOI: 10.1016/S0140-6736(17)31046-2
25. Finn R.S., Ryoo B.Y., Merle P., Kudo M., Bouattour M., Lim H.Y., et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, doubleblind, phase iii trial. J Clin Oncol. 2020;38(3):193–202. DOI: 10.1200/JCO.19.01307
26. Singal A.G., Lampertico P., Nahon P. Epidemiology and surveillance for hepatocellular carcinoma: New trends. J Hepatol. 2020;72(2):250–61. DOI: 10.1016/j.jhep.2019.08.025
27. El Dika I., Makki I., Abou-Alfa G.K. Hepatocellular carcinoma, novel therapies on the horizon. Chin Clin Oncol. 2021;10(1):12. DOI: 10.21037/cco-20-113.
28. McGlynn K.A., Petrick J.L., London W.T. Global epidemiology of hepatocellular carcinoma: an emphasis on demographic and regional variability. Clin Liver Dis. 2015;19(2):223–38. DOI: 10.1016/j.cld.2015.01.001
29. Rahib L., Smith B.D., Aizenberg R., Rosenzweig A.B., Fleshman J.M., Matrisian L.M. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21. DOI: 10.1158/0008-5472.CAN-14-0155
30. Trinchet J.C., Bourcier V., Chaffaut C., Ait Ahmed M., Allam S., Marcellin P., et al. Complications and competing risks of death in compensated viral cirrhosis (ANRS CO12 CirVir prospective cohort). Hepatology. 2015;62(3):737–50. DOI: 10.1002/hep.27743
31. Fracanzani A.L., Conte D., Fraquelli M., Taioli E., Mattioli M., Losco A., et al. Increased cancer risk in a cohort of 230 patients with hereditary hemochromatosis in comparison to matched control patients with non-iron-related chronic liver disease. Hepatology. 2001;33(3):647–51. DOI: 10.1053/jhep.2001.22506
32. Sia D., Villanueva A., Friedman S.L., Llovet J.M. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152(4):745–61. DOI: 10.1053/j.gastro.2016.11.048
33. Pikarsky E. Neighbourhood deaths cause a switch in cancer subtype. Nature. 2018;562(7725):45–6. DOI: 10.1038/d41586-018-06217-3
34. Seehawer M., Heinzmann F., D’Artista L., Harbig J., Roux P.-F., Hoenicke L., et al. Necroptosis microenvironment directs lineage commitment in liver cancer. Nature. 2018;562:69–75.
35. Guichard C., Amaddeo G., Imbeaud S., Ladeiro Y., Pelletier L., Maad I.B., et al. Integrated analysis of somatic mutations and focal copynumber changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44(6):694–8. DOI: 10.1038/ng.2256
36. Chiang D.Y., Villanueva A., Hoshida Y., Peix J., Newell P., Minguez B., et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 2008;68(16):6779–88. DOI: 10.1158/0008-5472.CAN-08-0742
37. Calderaro J., Ziol M., Paradis V., Zucman-Rossi J. Molecular and histological correlations in liver cancer. J Hepatol. 2019;71(3):616–30. DOI: 10.1016/j.jhep.2019.06.001
38. Hoshida Y., Nijman S.M., Kobayashi M., Chan J.A., Brunet J.P., Chiang D.Y., et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009;69(18):7385–92. DOI: 10.1158/0008-5472.CAN-09-1089
39. Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169(7):1327-1341.e23. DOI: 10.1016/j.cell.2017.05.046
40. Lee J.S., Heo J., Libbrecht L., Chu I.S., Kaposi-Novak P., Calvisi D.F., et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med. 2006;12(4):410–6. DOI: 10.1038/nm1377
41. Boyault S., Rickman D.S., de Reyniès A., Balabaud C., Rebouissou S., Jeannot E., et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45(1):42–52. DOI: 10.1002/hep.21467
42. Sia D., Jiao Y., Martinez-Quetglas I., Kuchuk O., Villacorta-Martin C., Castro de Moura M., et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology. 2017;153(3):812–26. DOI: 10.1053/j.gastro.2017.06.007
43. Bressac B., Kew M., Wands J., Ozturk M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature. 1991;350(6317):429–31. DOI: 10.1038/350429a0
44. Wang B., Huang G., Wang D., Li A., Xu Z., Dong R., et al. Null genotypes of GSTM1 and GSTT1 contribute to hepatocellular carcinoma risk: evidence from an updated meta-analysis. J Hepatol. 2010;53(3):508–18. DOI: 10.1016/j.jhep.2010.03.026
45. Romeo S., Kozlitina J., Xing C., Pertsemlidis A., Cox D., Pennacchio L.A., et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461–5. DOI: 10.1038/ng.257
46. Buch S., Stickel F., Trépo E., Way M., Herrmann A., Nischalke H.D., et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet. 2015;47(12):1443–8. DOI: 10.1038/ng.3417
47. Paterlini-Bréchot P., Saigo K., Murakami Y., Chami M., Gozuacik D., Mugnier C., et al. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene. 2003;22(25):3911–6. DOI: 10.1038/sj.onc.1206492
48. Nault J.C., Ningarhari M., Rebouissou S., Zucman-Rossi J. The role of telomeres and telomerase in cirrhosis and liver cancer. Nat Rev Gastroenterol Hepatol. 2019;16(9):544–58. DOI: 10.1038/s41575-019-0165-3
49. Bayard Q., Meunier L., Peneau C., Renault V., Shinde J., Nault J.C., et al. Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress. Nat Commun. 2018;9(1):5235. DOI: 10.1038/s41467-018-07552-9
50. Nault J.C., Datta S., Imbeaud S., Franconi A., Mallet M., Couchy G., et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet. 2015;47(10):1187–93. DOI: 10.1038/ng.3389
51. Letouzé E., Shinde J., Renault V., Couchy G., Blanc J.F., Tubacher E., et al. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat Commun. 2017;8(1):1315. DOI: 10.1038/s41467-017-01358-x
52. Rebouissou S., Nault J.C. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J Hepatol. 2020;72(2):215–29. DOI: 10.1016/j.jhep.2019.08.017
53. Lachenmayer A., Alsinet C., Savic R., Cabellos L., Toffanin S., Hoshida Y., et al. Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib. Clin Cancer Res. 2012;18(18):4997–5007. DOI: 10.1158/1078-0432.CCR-11-2322
54. Ruiz de Galarreta M., Bresnahan E., Molina-Sánchez P., Lindblad K.E., Maier B., Sia D., et al. β-Catenin activation promotes immune escape and resistance to Anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 2019;9(8):1124–41. DOI: 10.1158/2159-8290.CD-19-0074
55. Renehan A.G., Tyson M., Egger M., Heller R.F., Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78. DOI: 10.1016/S0140-6736(08)60269-X
56. Sutti S., Albano E. Adaptive immunity: an emerging player in the progression of NAFLD. Nat Rev Gastroenterol Hepatol. 2020;17(2):81–92. DOI: 10.1038/s41575-019-0210-2
57. Nakagawa H., Umemura A., Taniguchi K., Font-Burgada J., Dhar D., Ogata H., et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell. 2014;26(3):331–43. DOI: 10.1016/j.ccr.2014.07.001
58. Nishida N., Yada N., Hagiwara S., Sakurai T., Kitano M., Kudo M. Unique features associated with hepatic oxidative DNA damage and DNA methylation in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2016;31(9):1646–53. DOI: 10.1111/jgh.13318
59. Guri Y., Colombi M., Dazert E., Hindupur S.K., Roszik J., Moes S., et al. mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell. 2017;32(6):807–23.e12. DOI: 10.1016/j.ccell.2017.11.011
60. Liu D., Wong C.C., Fu L., Chen H., Zhao L., Li C., et al. Squalene epoxidase drives NAFLD-induced hepatocellular carcinoma and is a pharmaceutical target. Sci Transl Med. 2018;10(437):eaap9840. DOI: 10.1126/scitranslmed.aap9840
61. Umemura A., He F., Taniguchi K., Nakagawa H., Yamachika S., Font-Burgada J., et al. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell. 2016;29(6):935–48. DOI: 10.1016/j.ccell.2016.04.006
62. Grohmann M., Wiede F., Dodd G.T., Gurzov E.N., Ooi G.J., Butt T., et al. Obesity drives STAT-1-dependent NASH and STAT-3-dependent HCC. Cell. 2018;175(5):1289–306.e20. DOI: 10.1016/j.cell.2018.09.053
63. Henderson J.M., Zhang H.E., Polak N., Gorrell M.D. Hepatocellular carcinoma: Mouse models and the potential roles of proteases. Cancer Lett. 2017;387:106–13. DOI: 10.1016/j.canlet.2016.03.047
64. Negro F. Natural history of NASH and HCC. Liver Int. 2020;40 Suppl 1:72–6. DOI: 10.1111/liv.14362
65. Rudalska R., Dauch D., Longerich T., McJunkin K., Wuestefeld T., Kang T.W., et al. In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nat Med. 2014;20(10):1138–46. DOI: 10.1038/nm.3679
66. Martinez-Quetglas I., Pinyol R., Dauch D., Torrecilla S., Tovar V., Moeini A., et al. IGF2 Is Up-regulated by epigenetic mechanisms in hepatocellular carcinomas and is an actionable oncogene product in experimental models. Gastroenterology. 2016;151(6):1192–205. DOI: 10.1053/j.gastro.2016.09.001
67. Doudna J.A., Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. DOI: 10.1126/science.1258096
68. Cook N., Jodrell D.I., Tuveson D.A. Predictive in vivo animal models and translation to clinical trials. Drug Discov Today. 2012;17(5–6):253–60. DOI: 10.1016/j.drudis.2012.02.003
69. Singh M., Ferrara N. Modeling and predicting clinical efficacy for drugs targeting the tumor milieu. Nat Biotechnol. 2012;30:648–57. DOI: 10.1038/nbt.2286
70. Newell P., Villanueva A., Friedman S.L., Koike K., Llovet J.M. Experimental models of hepatocellular carcinoma. J Hepatol. 2008;48(5):858–79. DOI: 10.1016/j.jhep.2008.01.008
71. Bresnahan E., Ramadori P., Heikenwalder M., Zender L., Lujambio A. Novel patient-derived preclinical models of liver cancer. J Hepatol. 2020;72(2):239–49. DOI: 10.1016/j.jhep.2019.09.028
72. Moriya K., Fujie H., Shintani Y., Yotsuyanagi H., Tsutsumi T., Ishibashi K., et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med. 1998;4(9):1065–7. DOI: 10.1038/2053
73. Hagel M., Miduturu C., Sheets M., Rubin N., Weng W., Stransky N., et al. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov. 2015;5(4):424–37. DOI: 10.1158/2159-8290.CD-14-1029
74. Day C.P., Merlino G., Van Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 2015;163(1):39–53. DOI: 10.1016/j.cell.2015.08.068
75. Jayson G., Harris J. How participants in cancer trials are chosen: ethics and conflicting interests. Nat Rev Cancer. 2006;6(4):330–6. DOI: 10.1038/nrc1842
76. Febbraio M.A., Reibe S., Shalapour S., Ooi G.J., Watt M.J., Karin M. Preclinical models for studying NASH-driven HCC: How useful are they? Cell Metab. 2019;29(1):18–26. DOI: 10.1016/j.cmet.2018.10.012
77. Sharpless N.E., Depinho R.A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov. 2006;5(9):741–54. DOI: 10.1038/nrd2110
78. Wolf M.J., Adili A., Piotrowitz K., Abdullah Z., Boege Y., Stemmer K., et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell. 2014;26(4):549–64. DOI: 10.1016/j.ccell.2014.09.003
79. Ma C., Kesarwala A.H., Eggert T., Medina-Echeverz J., Kleiner D.E., Jin P., et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature. 2016;531(7593):253–7. DOI: 10.1038/nature16969
80. Malehmir M., Pfister D., Gallage S., Szydlowska M., Inverso D., Kotsiliti E., et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat Med. 2019;25(4):641–55. DOI: 10.1038/s41591-019-0379-5
81. Ringelhan M., Pfister D., O’Connor T., Pikarsky E., Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol. 2018;19(3):222–32. DOI: 10.1038/s41590-018-0044-z
82. Wada Y., Nakashima O., Kutami R., Yamamoto O., Kojiro M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology. 1998;27(2):407–14. DOI: 10.1002/hep.510270214
83. Yuan D., Huang S., Berger E., Liu L., Gross N., Heinzmann F., et al. Kupffer cell-derived Tnf triggers cholangiocellular tumorigenesis through JNK due to chronic mitochondrial dysfunction and ROS. Cancer Cell. 2017;31(6):771–89.e6. DOI: 10.1016/j.ccell.2017.05.006
84. Crispe I.N. The liver as a lymphoid organ. Annu Rev Immunol. 2009;27:147–63. DOI: 10.1146/annurev.immunol.021908.132629
85. Horwitz E., Stein I., Andreozzi M., Nemeth J., Shoham A., Pappo O., et al. Human and mouse VEGFA-amplified hepatocellular carcinomas are highly sensitive to sorafenib treatment. Cancer Discov. 2014;4(6):730–43. DOI: 10.1158/2159-8290.CD-13-0782
86. Finn R.S., Ikeda M., Zhu A.X., Sung M.W., Baron A.D., Kudo M., et al. Phase Ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. J Clin Oncol. 2020;38(26):2960–70. DOI: 10.1200/JCO.20.00808
87. Hou J., Zhang H., Sun B., Karin M. The immunobiology of hepatocellular carcinoma in humans and mice: Basic concepts and therapeutic implications. J Hepatol. 2020;72(1):167–82. DOI: 10.1016/j.jhep.2019.08.014
88. Hoshida Y., Villanueva A., Kobayashi M., Peix J., Chiang D.Y., Camargo A., et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 2008;359(19):1995–2004. DOI: 10.1056/NEJMoa0804525
89. Shalapour S., Lin X.J., Bastian I.N., Brain J., Burt A.D., Aksenov A.A., et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature. 2017;551(7680):340–5. DOI: 10.1038/nature24302
90. Kang T.W., Yevsa T., Woller N., Hoenicke L., Wuestefeld T., Dauch D., et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011;479(7374):547–51. DOI: 10.1038/nature10599
91. Flecken T., Schmidt N., Hild S., Gostick E., Drognitz O., Zeiser R., et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology. 2014;59(4):1415–26. DOI: 10.1002/hep.26731
92. Zheng C., Zheng L., Yoo J.K., Guo H., Zhang Y., Guo X., et al. Landscape of infiltrating T cells in liver cancer revealed by singlecell sequencing. Cell. 2017;169(7):1342–56.e16. DOI: 10.1016/j.cell.2017.05.035
93. Langhans B., Nischalke H.D., Krämer B., Dold L., Lutz P., Mohr R., et al. Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma. Cancer Immunol Immunother. 2019;68(12):2055–66. DOI: 10.1007/s00262-019-02427-4
94. Bruno T.C. New predictors for immunotherapy responses sharpen our view of the tumour microenvironment. Nature. 2020;577(7791):474–6. DOI: 10.1038/d41586-019-03943-0
95. Schneider C., Teufel A., Yevsa T., Staib F., Hohmeyer A., Walenda G., et al. Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer. Gut. 2012;61(12):1733–43. DOI: 10.1136/gutjnl-2011-301116
96. Sautès-Fridman C., Petitprez F., Calderaro J., Fridman W.H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019;19(6):307–25. DOI: 10.1038/s41568-019-0144-6
97. Calderaro J., Petitprez F., Becht E., Laurent A., Hirsch T.Z., Rousseau B., et al. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J Hepatol. 2019;70(1):58–65. DOI: 10.1016/j.jhep.2018.09.003
98. Finkin S., Yuan D., Stein I., Taniguchi K., Weber A., Unger K., et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16(12):1235–44. DOI: 10.1038/ni.3290
99. Tsuchida T., Friedman S.L. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14(7):397–411. DOI: 10.1038/nrgastro.2017.38
100. Higashi T., Friedman S.L., Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv. Rev. 2017;121:27–42. DOI: 10.1016/j.addr.2017.05.007
101. Dapito D.H., Mencin A., Gwak G.Y., Pradere J.P., Jang M.K., Mederacke I., et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21(4):504–16. DOI: 10.1016/j.ccr.2012.02.007
102. Ma C., Han M., Heinrich B., Fu Q., Zhang Q., Sandhu M., et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360(6391):eaan5931. DOI: 10.1126/science.aan5931
103. Hoshida Y., Villanueva A., Sangiovanni A., Sole M., Hur C., Andersson K.L., et al. Prognostic gene expression signature for patients with hepatitis C-related early-stage cirrhosis. Gastroenterology. 2013;144(5):1024–30. DOI: 10.1053/j.gastro.2013.01.021
104. Budhu A., Forgues M., Ye Q.H., Jia H.L., He P., Zanetti K.A., et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 2006;10(2):99–111. DOI: 10.1016/j.ccr.2006.06.016
105. Moeini A., Torrecilla S., Tovar V., Montironi C., Andreu-Oller C., Peix J., et al. An immune gene expression signature associated with development of human hepatocellular carcinoma identifies mice that respond to chemopreventive agents. Gastroenterology. 2019;157(5):1383–97.e11. DOI: 10.1053/j.gastro.2019.07.028
Review
For citations:
Menshikov K.V., Sultanbaev A.V., Musin Sh.I., Rakhmatullina I.R., Menshikova I.A., Abdeev R.R., Sultanbaeva N.I., Popova E.V., Serebrennikov G.A. Hepatocellular Carcinoma: Aetiology and Mechanisms of Development. A Literature Review. Creative surgery and oncology. 2022;12(2):139-150. (In Russ.) https://doi.org/10.24060/2076-3093-2022-12-2-139-150