Preview

Creative surgery and oncology

Advanced search

Hepatocellular Carcinoma: Aetiology and Mechanisms of Development. A Literature Review

https://doi.org/10.24060/2076-3093-2022-12-2-139-150

Abstract

Liver cancer remains a global challenge of healthcare, with the incidence growing worldwide. According to various authors, over 1 million patients will be diagnosed with liver cancer each year by 2025. The molecular pathogenesis of HCC varies with respect to genotoxic lesions and aetiologies. Although our understanding of the HCC pathophysiology and drivers tends to improve, it is still distant from translation into clinical practice. About 25 % of HCC cases are associated with variant mutations. HCC pathophysiology is a complex multi-step process. The interaction of various factors underlies the early stages of malignant hepatocyte transformation towards the development of HCC. Overall, about 20–25 % of HCC patients have at least one potential driver mutation. Obesity should also be noted as being associated with a higher risk of HCC and various other cancers. Despite many issues in the HCC pathogenesis being already known, the unresolved questions remain. Modern molecular genetic diagnostics and animal modelling of malignant tumours are expanding our horizons of knowledge in this field.

About the Authors

K. V. Menshikov
Republican Clinical Oncology Dispensary; Bashkir State Medical University
Russian Federation

Cand. Sci. (Med.), Assoc. Prof., Department of Oncology with courses of Oncology and Pathological Anatomy for Advanced Professional Education, Chemotherapy Unit

 Ufa



A. V. Sultanbaev
Republican Clinical Oncology Dispensary
Russian Federation

 Cand. Sci. (Med.), Anticancer Drug Therapy Unit 

 Ufa



Sh. I. Musin
Republican Clinical Oncology Dispensary
Russian Federation

 Cand. Sci. (Med.), Surgery Unit No. 6 

 Ufa



I. R. Rakhmatullina
Bashkir State Medical University
Russian Federation

 Dr. Sci. (Med.), Prof., Department of Oncology with courses of Oncology and Pathological Anatomy for Advanced Professional Education 

 Ufa



I. A. Menshikova
Bashkir State Medical University
Russian Federation

 Cand. Sci. (Med.), Assoc. Prof., Department of Biological Chemistry 

 Ufa



R. R. Abdeev
Republican Clinical Oncology Dispensary
Russian Federation

 Cand. Sci. (Med.), Surgery Unit No. 1 

 Ufa



N. I. Sultanbaeva
Republican Clinical Oncology Dispensary
Russian Federation

 Anticancer Drug Therapy Unit No. 1 

 Ufa



E. V. Popova
Republican Clinical Oncology Dispensary
Russian Federation

 Outpatient Anticancer Drug Therapy Unit 

 Ufa



G. A. Serebrennikov
Bashkir State Medical University
Russian Federation

 Department of Oncology with courses of Oncology and Pathological Anatomy for Advanced Professional Education 

 Ufa



References

1. Llovet J.M., Kelley R.K., Villanueva A., Singal A.G., Pikarsky E., Roayaie S., et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6. DOI: 10.1038/s41572-020-00240-3

2. Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380(15):1450–62. DOI: 10.1056/NEJMra1713263

3. Cancer Online. International Agency for Research on Cancer. GLOBOCAN 2018. Available at: https://gco.iarc.fr/today/online-analysismap?v=2020&mode=population&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=11&type=0&statistic=5&prevalence=0&population_groupearth&color_palette=default&map_scale=quantile&map_nb_colors=5&continent=0&rotate= %255B10 %252C0 %255D (accessed 20 July 2020).

4. Akinyemiju T., Abera S., Ahmed M., Alam N., Alemayohu M.A., Allen C., et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015. JAMA Oncol. 2017;3(12):1683–91. DOI: 10.1001/jamaoncol.2017.3055

5. Kanwal F., Kramer J., Asch S.M., Chayanupatkul M., Cao Y., El-Serag H.B. Risk of hepatocellular cancer in HCV patients treated with directacting antiviral agents. Gastroenterology. 2017;153(4):996–1005.e1. DOI: 10.1053/j.gastro.2017.06.012

6. Estes C., Razavi H., Loomba R., Younossi Z., Sanyal A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67(1):123–33. DOI: 10.1002/hep.29466

7. Schulze K., Imbeaud S., Letouzé E., Alexandrov L.B., Calderaro J., Rebouissou S., et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47(5):505–11. DOI: 10.1038/ng.3252

8. Llovet J.M., Montal R., Sia D., Finn R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15:599–616.

9. Zucman-Rossi J., Villanueva A., Nault J.C., Llovet J.M. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology. 2015;149(5):1226–39.e4. DOI: 10.1053/j.gastro.2015.05.061

10. Anstee Q.M., Reeves H.L., Kotsiliti E., Govaere O., Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16(7):411–28. DOI: 10.1038/s41575-019-0145-7

11. Friedman S.L., Neuschwander-Tetri B.A., Rinella M., Sanyal A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22. DOI: 10.1038/s41591-018-0104-9

12. European Association for the Study of the Liver. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236. DOI: 10.1016/j.jhep.2018.03.019

13. Marrero J.A., Kulik L.M., Sirlin C.B., Zhu A.X., Finn R.S., Abecassis M.M., et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the study of liver diseases. Hepatology. 2018;68(2):723–50. DOI: 10.1002/hep.29913

14. Llovet J.M., De Baere T., Kulik L., Haber P.K., Greten T.F., Meyer T., et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18(5):293–313. DOI: 10.1038/s41575-020-00395-0

15. Tabrizian P., Holzner M., Halazun K., Agopian V.G., Busuttil R.W., Yao F., et al. A US multicenter analysis of 2529 HCC patients undergoing liver transplantation: 10-year outcome assessing the role of down-staging to within Milan criteria [abstract 15]. Hepatology. 2019;70:10–1.

16. Llovet J.M., Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology. 2003;37(2):429–42. DOI: 10.1053/jhep.2003.50047

17. Salem R., Gordon A.C., Mouli S., Hickey R., Kallini J., Gabr A., et al. Y90 Radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology. 2016;151(6):1155–63.e2. DOI: 10.1053/j.gastro.2016.08.029

18. Finn R.S., Qin S., Ikeda M., Galle P.R., Ducreux M., Kim T.Y., et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020;382(20):1894–905. DOI: 10.1056/NEJMoa1915745

19. Llovet J.M., Ricci S., Mazzaferro V., Hilgard P., Gane E., Blanc J.F., et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90. DOI: 10.1056/NEJMoa0708857

20. Kudo M., Finn R.S., Qin S., Han K.H., Ikeda K., Piscaglia F., et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 noninferiority trial. Lancet. 2018;391(10126):1163–73. DOI: 10.1016/S0140-6736(18)30207-1

21. Bruix J., Qin S., Merle P., Granito A., Huang Y.H., Bodoky G., et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66. DOI: 10.1016/S0140-6736(16)32453-9

22. Shlomai A., Leshno M., Goldstein D.A. Cabozantinib for patients with advanced hepatocellular carcinoma: a cost-effectiveness analysis. Therap Adv Gastroenterol. 2019;12:1756284819878304. DOI: 10.1177/1756284819878304

23. Zhu A.X., Kang Y.K., Yen C.J., Finn R.S., Galle P.R., Llovet J.M., et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(2):282–96. DOI: 10.1016/S1470-2045(18)30937-9

24. El-Khoueiry A.B., Sangro B., Yau T., Crocenzi T.S., Kudo M., Hsu C., et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502. DOI: 10.1016/S0140-6736(17)31046-2

25. Finn R.S., Ryoo B.Y., Merle P., Kudo M., Bouattour M., Lim H.Y., et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, doubleblind, phase iii trial. J Clin Oncol. 2020;38(3):193–202. DOI: 10.1200/JCO.19.01307

26. Singal A.G., Lampertico P., Nahon P. Epidemiology and surveillance for hepatocellular carcinoma: New trends. J Hepatol. 2020;72(2):250–61. DOI: 10.1016/j.jhep.2019.08.025

27. El Dika I., Makki I., Abou-Alfa G.K. Hepatocellular carcinoma, novel therapies on the horizon. Chin Clin Oncol. 2021;10(1):12. DOI: 10.21037/cco-20-113.

28. McGlynn K.A., Petrick J.L., London W.T. Global epidemiology of hepatocellular carcinoma: an emphasis on demographic and regional variability. Clin Liver Dis. 2015;19(2):223–38. DOI: 10.1016/j.cld.2015.01.001

29. Rahib L., Smith B.D., Aizenberg R., Rosenzweig A.B., Fleshman J.M., Matrisian L.M. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21. DOI: 10.1158/0008-5472.CAN-14-0155

30. Trinchet J.C., Bourcier V., Chaffaut C., Ait Ahmed M., Allam S., Marcellin P., et al. Complications and competing risks of death in compensated viral cirrhosis (ANRS CO12 CirVir prospective cohort). Hepatology. 2015;62(3):737–50. DOI: 10.1002/hep.27743

31. Fracanzani A.L., Conte D., Fraquelli M., Taioli E., Mattioli M., Losco A., et al. Increased cancer risk in a cohort of 230 patients with hereditary hemochromatosis in comparison to matched control patients with non-iron-related chronic liver disease. Hepatology. 2001;33(3):647–51. DOI: 10.1053/jhep.2001.22506

32. Sia D., Villanueva A., Friedman S.L., Llovet J.M. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152(4):745–61. DOI: 10.1053/j.gastro.2016.11.048

33. Pikarsky E. Neighbourhood deaths cause a switch in cancer subtype. Nature. 2018;562(7725):45–6. DOI: 10.1038/d41586-018-06217-3

34. Seehawer M., Heinzmann F., D’Artista L., Harbig J., Roux P.-F., Hoenicke L., et al. Necroptosis microenvironment directs lineage commitment in liver cancer. Nature. 2018;562:69–75.

35. Guichard C., Amaddeo G., Imbeaud S., Ladeiro Y., Pelletier L., Maad I.B., et al. Integrated analysis of somatic mutations and focal copynumber changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44(6):694–8. DOI: 10.1038/ng.2256

36. Chiang D.Y., Villanueva A., Hoshida Y., Peix J., Newell P., Minguez B., et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 2008;68(16):6779–88. DOI: 10.1158/0008-5472.CAN-08-0742

37. Calderaro J., Ziol M., Paradis V., Zucman-Rossi J. Molecular and histological correlations in liver cancer. J Hepatol. 2019;71(3):616–30. DOI: 10.1016/j.jhep.2019.06.001

38. Hoshida Y., Nijman S.M., Kobayashi M., Chan J.A., Brunet J.P., Chiang D.Y., et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009;69(18):7385–92. DOI: 10.1158/0008-5472.CAN-09-1089

39. Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169(7):1327-1341.e23. DOI: 10.1016/j.cell.2017.05.046

40. Lee J.S., Heo J., Libbrecht L., Chu I.S., Kaposi-Novak P., Calvisi D.F., et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med. 2006;12(4):410–6. DOI: 10.1038/nm1377

41. Boyault S., Rickman D.S., de Reyniès A., Balabaud C., Rebouissou S., Jeannot E., et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45(1):42–52. DOI: 10.1002/hep.21467

42. Sia D., Jiao Y., Martinez-Quetglas I., Kuchuk O., Villacorta-Martin C., Castro de Moura M., et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology. 2017;153(3):812–26. DOI: 10.1053/j.gastro.2017.06.007

43. Bressac B., Kew M., Wands J., Ozturk M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature. 1991;350(6317):429–31. DOI: 10.1038/350429a0

44. Wang B., Huang G., Wang D., Li A., Xu Z., Dong R., et al. Null genotypes of GSTM1 and GSTT1 contribute to hepatocellular carcinoma risk: evidence from an updated meta-analysis. J Hepatol. 2010;53(3):508–18. DOI: 10.1016/j.jhep.2010.03.026

45. Romeo S., Kozlitina J., Xing C., Pertsemlidis A., Cox D., Pennacchio L.A., et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461–5. DOI: 10.1038/ng.257

46. Buch S., Stickel F., Trépo E., Way M., Herrmann A., Nischalke H.D., et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet. 2015;47(12):1443–8. DOI: 10.1038/ng.3417

47. Paterlini-Bréchot P., Saigo K., Murakami Y., Chami M., Gozuacik D., Mugnier C., et al. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene. 2003;22(25):3911–6. DOI: 10.1038/sj.onc.1206492

48. Nault J.C., Ningarhari M., Rebouissou S., Zucman-Rossi J. The role of telomeres and telomerase in cirrhosis and liver cancer. Nat Rev Gastroenterol Hepatol. 2019;16(9):544–58. DOI: 10.1038/s41575-019-0165-3

49. Bayard Q., Meunier L., Peneau C., Renault V., Shinde J., Nault J.C., et al. Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress. Nat Commun. 2018;9(1):5235. DOI: 10.1038/s41467-018-07552-9

50. Nault J.C., Datta S., Imbeaud S., Franconi A., Mallet M., Couchy G., et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet. 2015;47(10):1187–93. DOI: 10.1038/ng.3389

51. Letouzé E., Shinde J., Renault V., Couchy G., Blanc J.F., Tubacher E., et al. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat Commun. 2017;8(1):1315. DOI: 10.1038/s41467-017-01358-x

52. Rebouissou S., Nault J.C. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J Hepatol. 2020;72(2):215–29. DOI: 10.1016/j.jhep.2019.08.017

53. Lachenmayer A., Alsinet C., Savic R., Cabellos L., Toffanin S., Hoshida Y., et al. Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib. Clin Cancer Res. 2012;18(18):4997–5007. DOI: 10.1158/1078-0432.CCR-11-2322

54. Ruiz de Galarreta M., Bresnahan E., Molina-Sánchez P., Lindblad K.E., Maier B., Sia D., et al. β-Catenin activation promotes immune escape and resistance to Anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 2019;9(8):1124–41. DOI: 10.1158/2159-8290.CD-19-0074

55. Renehan A.G., Tyson M., Egger M., Heller R.F., Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78. DOI: 10.1016/S0140-6736(08)60269-X

56. Sutti S., Albano E. Adaptive immunity: an emerging player in the progression of NAFLD. Nat Rev Gastroenterol Hepatol. 2020;17(2):81–92. DOI: 10.1038/s41575-019-0210-2

57. Nakagawa H., Umemura A., Taniguchi K., Font-Burgada J., Dhar D., Ogata H., et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell. 2014;26(3):331–43. DOI: 10.1016/j.ccr.2014.07.001

58. Nishida N., Yada N., Hagiwara S., Sakurai T., Kitano M., Kudo M. Unique features associated with hepatic oxidative DNA damage and DNA methylation in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2016;31(9):1646–53. DOI: 10.1111/jgh.13318

59. Guri Y., Colombi M., Dazert E., Hindupur S.K., Roszik J., Moes S., et al. mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell. 2017;32(6):807–23.e12. DOI: 10.1016/j.ccell.2017.11.011

60. Liu D., Wong C.C., Fu L., Chen H., Zhao L., Li C., et al. Squalene epoxidase drives NAFLD-induced hepatocellular carcinoma and is a pharmaceutical target. Sci Transl Med. 2018;10(437):eaap9840. DOI: 10.1126/scitranslmed.aap9840

61. Umemura A., He F., Taniguchi K., Nakagawa H., Yamachika S., Font-Burgada J., et al. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell. 2016;29(6):935–48. DOI: 10.1016/j.ccell.2016.04.006

62. Grohmann M., Wiede F., Dodd G.T., Gurzov E.N., Ooi G.J., Butt T., et al. Obesity drives STAT-1-dependent NASH and STAT-3-dependent HCC. Cell. 2018;175(5):1289–306.e20. DOI: 10.1016/j.cell.2018.09.053

63. Henderson J.M., Zhang H.E., Polak N., Gorrell M.D. Hepatocellular carcinoma: Mouse models and the potential roles of proteases. Cancer Lett. 2017;387:106–13. DOI: 10.1016/j.canlet.2016.03.047

64. Negro F. Natural history of NASH and HCC. Liver Int. 2020;40 Suppl 1:72–6. DOI: 10.1111/liv.14362

65. Rudalska R., Dauch D., Longerich T., McJunkin K., Wuestefeld T., Kang T.W., et al. In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nat Med. 2014;20(10):1138–46. DOI: 10.1038/nm.3679

66. Martinez-Quetglas I., Pinyol R., Dauch D., Torrecilla S., Tovar V., Moeini A., et al. IGF2 Is Up-regulated by epigenetic mechanisms in hepatocellular carcinomas and is an actionable oncogene product in experimental models. Gastroenterology. 2016;151(6):1192–205. DOI: 10.1053/j.gastro.2016.09.001

67. Doudna J.A., Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. DOI: 10.1126/science.1258096

68. Cook N., Jodrell D.I., Tuveson D.A. Predictive in vivo animal models and translation to clinical trials. Drug Discov Today. 2012;17(5–6):253–60. DOI: 10.1016/j.drudis.2012.02.003

69. Singh M., Ferrara N. Modeling and predicting clinical efficacy for drugs targeting the tumor milieu. Nat Biotechnol. 2012;30:648–57. DOI: 10.1038/nbt.2286

70. Newell P., Villanueva A., Friedman S.L., Koike K., Llovet J.M. Experimental models of hepatocellular carcinoma. J Hepatol. 2008;48(5):858–79. DOI: 10.1016/j.jhep.2008.01.008

71. Bresnahan E., Ramadori P., Heikenwalder M., Zender L., Lujambio A. Novel patient-derived preclinical models of liver cancer. J Hepatol. 2020;72(2):239–49. DOI: 10.1016/j.jhep.2019.09.028

72. Moriya K., Fujie H., Shintani Y., Yotsuyanagi H., Tsutsumi T., Ishibashi K., et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med. 1998;4(9):1065–7. DOI: 10.1038/2053

73. Hagel M., Miduturu C., Sheets M., Rubin N., Weng W., Stransky N., et al. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov. 2015;5(4):424–37. DOI: 10.1158/2159-8290.CD-14-1029

74. Day C.P., Merlino G., Van Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 2015;163(1):39–53. DOI: 10.1016/j.cell.2015.08.068

75. Jayson G., Harris J. How participants in cancer trials are chosen: ethics and conflicting interests. Nat Rev Cancer. 2006;6(4):330–6. DOI: 10.1038/nrc1842

76. Febbraio M.A., Reibe S., Shalapour S., Ooi G.J., Watt M.J., Karin M. Preclinical models for studying NASH-driven HCC: How useful are they? Cell Metab. 2019;29(1):18–26. DOI: 10.1016/j.cmet.2018.10.012

77. Sharpless N.E., Depinho R.A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov. 2006;5(9):741–54. DOI: 10.1038/nrd2110

78. Wolf M.J., Adili A., Piotrowitz K., Abdullah Z., Boege Y., Stemmer K., et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell. 2014;26(4):549–64. DOI: 10.1016/j.ccell.2014.09.003

79. Ma C., Kesarwala A.H., Eggert T., Medina-Echeverz J., Kleiner D.E., Jin P., et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature. 2016;531(7593):253–7. DOI: 10.1038/nature16969

80. Malehmir M., Pfister D., Gallage S., Szydlowska M., Inverso D., Kotsiliti E., et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat Med. 2019;25(4):641–55. DOI: 10.1038/s41591-019-0379-5

81. Ringelhan M., Pfister D., O’Connor T., Pikarsky E., Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol. 2018;19(3):222–32. DOI: 10.1038/s41590-018-0044-z

82. Wada Y., Nakashima O., Kutami R., Yamamoto O., Kojiro M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology. 1998;27(2):407–14. DOI: 10.1002/hep.510270214

83. Yuan D., Huang S., Berger E., Liu L., Gross N., Heinzmann F., et al. Kupffer cell-derived Tnf triggers cholangiocellular tumorigenesis through JNK due to chronic mitochondrial dysfunction and ROS. Cancer Cell. 2017;31(6):771–89.e6. DOI: 10.1016/j.ccell.2017.05.006

84. Crispe I.N. The liver as a lymphoid organ. Annu Rev Immunol. 2009;27:147–63. DOI: 10.1146/annurev.immunol.021908.132629

85. Horwitz E., Stein I., Andreozzi M., Nemeth J., Shoham A., Pappo O., et al. Human and mouse VEGFA-amplified hepatocellular carcinomas are highly sensitive to sorafenib treatment. Cancer Discov. 2014;4(6):730–43. DOI: 10.1158/2159-8290.CD-13-0782

86. Finn R.S., Ikeda M., Zhu A.X., Sung M.W., Baron A.D., Kudo M., et al. Phase Ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. J Clin Oncol. 2020;38(26):2960–70. DOI: 10.1200/JCO.20.00808

87. Hou J., Zhang H., Sun B., Karin M. The immunobiology of hepatocellular carcinoma in humans and mice: Basic concepts and therapeutic implications. J Hepatol. 2020;72(1):167–82. DOI: 10.1016/j.jhep.2019.08.014

88. Hoshida Y., Villanueva A., Kobayashi M., Peix J., Chiang D.Y., Camargo A., et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 2008;359(19):1995–2004. DOI: 10.1056/NEJMoa0804525

89. Shalapour S., Lin X.J., Bastian I.N., Brain J., Burt A.D., Aksenov A.A., et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature. 2017;551(7680):340–5. DOI: 10.1038/nature24302

90. Kang T.W., Yevsa T., Woller N., Hoenicke L., Wuestefeld T., Dauch D., et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011;479(7374):547–51. DOI: 10.1038/nature10599

91. Flecken T., Schmidt N., Hild S., Gostick E., Drognitz O., Zeiser R., et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology. 2014;59(4):1415–26. DOI: 10.1002/hep.26731

92. Zheng C., Zheng L., Yoo J.K., Guo H., Zhang Y., Guo X., et al. Landscape of infiltrating T cells in liver cancer revealed by singlecell sequencing. Cell. 2017;169(7):1342–56.e16. DOI: 10.1016/j.cell.2017.05.035

93. Langhans B., Nischalke H.D., Krämer B., Dold L., Lutz P., Mohr R., et al. Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma. Cancer Immunol Immunother. 2019;68(12):2055–66. DOI: 10.1007/s00262-019-02427-4

94. Bruno T.C. New predictors for immunotherapy responses sharpen our view of the tumour microenvironment. Nature. 2020;577(7791):474–6. DOI: 10.1038/d41586-019-03943-0

95. Schneider C., Teufel A., Yevsa T., Staib F., Hohmeyer A., Walenda G., et al. Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer. Gut. 2012;61(12):1733–43. DOI: 10.1136/gutjnl-2011-301116

96. Sautès-Fridman C., Petitprez F., Calderaro J., Fridman W.H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019;19(6):307–25. DOI: 10.1038/s41568-019-0144-6

97. Calderaro J., Petitprez F., Becht E., Laurent A., Hirsch T.Z., Rousseau B., et al. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J Hepatol. 2019;70(1):58–65. DOI: 10.1016/j.jhep.2018.09.003

98. Finkin S., Yuan D., Stein I., Taniguchi K., Weber A., Unger K., et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16(12):1235–44. DOI: 10.1038/ni.3290

99. Tsuchida T., Friedman S.L. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14(7):397–411. DOI: 10.1038/nrgastro.2017.38

100. Higashi T., Friedman S.L., Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv. Rev. 2017;121:27–42. DOI: 10.1016/j.addr.2017.05.007

101. Dapito D.H., Mencin A., Gwak G.Y., Pradere J.P., Jang M.K., Mederacke I., et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21(4):504–16. DOI: 10.1016/j.ccr.2012.02.007

102. Ma C., Han M., Heinrich B., Fu Q., Zhang Q., Sandhu M., et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360(6391):eaan5931. DOI: 10.1126/science.aan5931

103. Hoshida Y., Villanueva A., Sangiovanni A., Sole M., Hur C., Andersson K.L., et al. Prognostic gene expression signature for patients with hepatitis C-related early-stage cirrhosis. Gastroenterology. 2013;144(5):1024–30. DOI: 10.1053/j.gastro.2013.01.021

104. Budhu A., Forgues M., Ye Q.H., Jia H.L., He P., Zanetti K.A., et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 2006;10(2):99–111. DOI: 10.1016/j.ccr.2006.06.016

105. Moeini A., Torrecilla S., Tovar V., Montironi C., Andreu-Oller C., Peix J., et al. An immune gene expression signature associated with development of human hepatocellular carcinoma identifies mice that respond to chemopreventive agents. Gastroenterology. 2019;157(5):1383–97.e11. DOI: 10.1053/j.gastro.2019.07.028


Review

For citations:


Menshikov K.V., Sultanbaev A.V., Musin Sh.I., Rakhmatullina I.R., Menshikova I.A., Abdeev R.R., Sultanbaeva N.I., Popova E.V., Serebrennikov G.A. Hepatocellular Carcinoma: Aetiology and Mechanisms of Development. A Literature Review. Creative surgery and oncology. 2022;12(2):139-150. (In Russ.) https://doi.org/10.24060/2076-3093-2022-12-2-139-150

Views: 1871


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)