HIV-associated lymphomas
https://doi.org/10.24060/2076-3093-2022-12-4-320-327
Abstract
A steady worldwide increase in the number of people living with HIV (PLHIV) and diagnostic methods requires a separate review of patient-specific nosologies, including lymphoproliferative diseases, some of which are directly associated with the virus due to its oncogenic effect and those that do not relate directly to HIV but introduce nuances to diagnostic and therapeutic approaches when a patient is HIV-positive. Towards this, the paper generally reviews lymphomas in PLHIV, presents the WHO classification of HIV-associated lymphomas, describes a contemporary view of the known mechanisms of pathogenesis, including the role of opportunistic infections, and general principles of diagnostic and therapeutic tactics, provides recommendations on modifying the doses of chemotherapy correlated with the immune status and on preventing CNS involvement. Specific types of lymphoma (Burkitt’s lymphoma, diff use large B-cell lymphoma) are considered separately, including those most frequently associated with patients living with HIV (primary effusion lymphoma, plasmablastic lymphoma, primary central nervous system lymphoma), but rare in the uninfected population.
About the Authors
G. A. DudinaRussian Federation
Galina A. Dudina — Dr. Sci. (Med.), Prof., Department of Oncology, Hematology and Radiation Therapy of the Faculty of Pediatrics, Unit of Hematology and Chemotherapy of Hemoblastosis, Scientific Unit of Oncohematology and Secondary Immunodefi ciency Diseases
Moscow
Ch. K. Mabudzada
Russian Federation
Chingiz K. Mabudzada — Junior Researcher, Scientific Unit of Oncohematology and Secondary Immunodefi ciency Diseases
Moscow
A. A. Ogannisyan
Russian Federation
Arman A. Ogannisyan — Unit of Hematology and Chemotherapy of Hemoblastosis
Moscow
V. N. Nemikin
Russian Federation
Vadim N. Nemikin — Unit of Hematology and Chemotherapy of Hemoblastosis
Moscow
References
1. Lamers S.L., Fogel G.B., Huysentruyt L.C., McGrath M.S. HIV-1 nef protein visits B-cells via macrophage nanotubes: a mechanism for AIDS-related lymphoma pathogenesis? Curr HIV Res. 2010;8(8):638–40. DOI: 10.2174/157016210794088209
2. Noy A. HIV Lymphoma and Burkitts Lymphoma. Cancer J. 2020;26(3):260–8. DOI: 10.1097/PPO.0000000000000448
3. Siangphoe U., Archer K.J., Nguyen C., Lee K.R. Associations of antiretroviral therapy and comorbidities with neurocognitive outcomes in HIV-1-infected patients. AIDS. 2020;34(6):893–902. DOI: 10.1097/QAD.0000000000002491
4. Wang Z., Zhang R., Liu L., Shen Y., Chen J., Qi T., et al. Incidence and spectrum of infections among HIV/AIDS patients with lymphoma during chemotherapy. J Infect Chemother. 2021;27(10):1459–64. DOI: 10.1016/j.jiac.2021.06.012
5. Khan A., Brahim A., Ruiz M., Nagovski N. Relapsed/refractory Burkitt lymphoma and HIV infection. Int J STD AIDS. 2018;29(7):695–703. DOI: 10.1177/0956462417748239
6. Collaboration of Observational HIV Epidemiological Research Europe (COHERE) Study Group, Bohlius J., Schmidlin K., Costagliola D., Fätkenheuer G., et al. Incidence and risk factors of HIV-related nonHodgkin’s lymphoma in the era of combination antiretroviral therapy: a European multicohort study. Antivir Ther. 2009;14(8):1065–74. DOI: 10.3851/IMP1462
7. Borges Á.H., Neuhaus J., Sharma S., Neaton J.D., Henry K., Anagnostou O., et al. The effect of interrupted/deferred antiretroviral therapy on disease risk: a SMART and START combined analysis. J Infect Dis. 2019;219(2):254–63. DOI: 10.1093/infdis/jiy442
8. Shepherd L., Borges Á.H., Harvey R., Bower M., Grulich A., Silverberg M., et al. The extent of B-cell activation and dysfunction preceding lymphoma development in HIV-positive people. HIV Med. 2018;19(2):90–101. DOI: 10.1111/hiv.12546
9. Breen E.C., Hussain S.K., Magpantay L., Jacobson L.P., Detels R., Rabkin C.S., et al. B-cell stimulatory cytokines and markers of immune activation are elevated several years prior to the diagnosis of systemic AIDS-associated non-Hodgkin B-cell lymphoma. Cancer Epidemiol Biomarkers Prev. 2011;20(7):1303–14. DOI: 10.1158/1055-9965.EPI-11-0037
10. Peckham-Gregory E.C., Thapa D.R., Martinson J., Duggal P., Penugonda S., Bream J.H., et al. MicroRNA-related polymorphisms and non-Hodgkin lymphoma susceptibility in the Multicenter AIDS Cohort Study. Cancer Epidemiol. 2016;45:47–57. DOI: 10.1016/j.canep.2016.09.007
11. Martorelli D., Muraro E., Mastorci K., Dal Col J., Faè D.A., Furlan C., et al. A natural HIV p17 protein variant up-regulates the LMP-1 EBV oncoprotein and promotes the growth of EBV-infected B-lymphocytes: implications for EBV-driven lymphomagenesis in the HIV setting. Int J Cancer. 2015;137(6):1374–85. DOI: 10.1002/ijc.29494
12. Sall F.B., El Amine R., Markozashvili D., Tsfasman T., Oksenhendler E., Lipinski M., et al. HIV-1 Tat protein induces aberrant activation of AICDA in human B-lymphocytes from peripheral blood. J Cell Physiol. 2019 Jan 31. DOI: 10.1002/jcp.28219
13. Germini D., Tsfasman T., Klibi M., El-Amine R., Pichugin A., Iarovaia O.V., et al. HIV Tat induces a prolonged MYC relocalization next to IGH in circulating B-cells. Leukemia. 2017;31(11):2515–22. DOI: 10.1038/leu.2017.106
14. El-Amine R., Germini D., Zakharova V.V., Tsfasman T., Sheval E.V., Louzada R.A.N., et al. HIV-1 Tat protein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production. Redox Biol. 2018;15:97–108. DOI: 10.1016/j.redox.2017.11.024
15. Isaguliants M., Bayurova E., Avdoshina D., Kondrashova A., Chiodi F., Palefsky J.M. Oncogenic Effects of HIV-1 Proteins, Mechanisms Behind. Cancers (Basel). 2021;13(2):305. DOI: 10.3390/cancers13020305
16. Samson M., Libert F., Doranz B.J., Rucker J., Liesnard C., Farber C.M., et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996;382(6593):722–5. DOI: 10.1038/382722a0
17. Thorball C.W., Oudot-Mellakh T., Ehsan N., Hammer C., Santoni F.A., Niay J., et al. Genetic variation near CXCL12 is associated with susceptibility to HIV-related non-Hodgkin lymphoma. Haematologica. 2021;106(8):2233–41. DOI: 10.3324/haematol.2020.247023
18. Besson C., Goubar A., Gabarre J., Rozenbaum W., Pialoux G., Châtelet F.P., et al. Changes in AIDS-related lymphoma since the era of highly active antiretroviral therapy. Blood. 2001;98(8):2339–44. DOI: 10.1182/blood.v98.8.2339
19. Barta S.K., Xue X., Wang D., Tamari R., Lee J.Y., Mounier N., et al. Treatment factors affecting outcomes in HIV-associated nonHodgkin lymphomas: a pooled analysis of 1546 patients. Blood. 2013;122(19):3251–62. DOI: 10.1182/blood-2013-04-498964
20. Schmitz N., Zeynalova S., Nickelsen M., Kansara R., Villa D., Sehn L.H., et al. CNS International Prognostic Index: A risk model for CNS relapse in patients with diffuse large B-Cell lymphoma treated with R-CHOP. J Clin Oncol. 2016;34(26):3150–6. DOI: 10.1200/ JCO.2015.65.6520
21. B-cell Lymphomas. — National Comprehensive Cancer Network; [cited 2021 Oct 23]. Available from: www.nccn.org/guidelines/guidelines-detail?category=1&id=1480
22. Sparano J.A., Lee J.Y., Kaplan L.D., Ramos J.C., Ambinder R.F., Wachsman W., et al. Response-adapted therapy with infusional EPOCH chemotherapy plus rituximab in HIV-associated, B-cell non-Hodgkin’s lymphoma. Haematologica. 2021;106(3):730–5. DOI: 10.3324/haematol.2019.243386
23. Lyman G.H.. Evaluation and regulation of oncology drug approval: finding the right balance. JAMA Oncol. 2016;2(6):728–9. DOI: 10.1001/jamaoncol.2015.6477
24. Barta S.K., Lee J.Y., Kaplan L.D., Noy A., Sparano J.A. Pooled analysis of AIDS malignancy consortium trials evaluating rituximab plus CHOP or infusional EPOCH chemotherapy in HIV-associated nonHodgkin lymphoma. Cancer. 2012;118(16):3977–83. DOI: 10.1002/cncr.26723
25. Boué F., Gabarre J., Gisselbrecht C., Reynes J., Cheret A., Bonnet F., et al. Phase II trial of CHOP plus rituximab in patients with HIV-associated non-Hodgkin’s lymphoma. J Clin Oncol. 2006;24(25):4123–8. DOI: 10.1200/JCO.2005.05.4684
26. Habbous S., Guo H., Beca J., Dai W.F., Isaranuwatchai W., Cheung M., et al. The effectiveness of rituximab and HIV on the survival of Ontario patients with diffuse large B-cell lymphoma. Cancer Med. 2020;9(19):7072–82. DOI: 10.1002/cam4.3362
27. Noy A., Lee J.Y., Cesarman E., Ambinder R., Baiocchi R., Reid E., et al. AMC 048: modified CODOX-M/IVAC-rituximab is safe and effective for HIV-associated Burkitt lymphoma. Blood. 2015;126(2):160–6. DOI: 10.1182/blood-2015-01-623900
28. Kassam S., Bower M., Lee S.M., de Vos J., Fields P., Gandhi S., et al. A retrospective, multi-center analysis of treatment intensification for human immunodeficiency virus-positive patients with high-risk diffuse large B-cell lymphoma. Leuk Lymphoma. 2013;54(9):1921–7. DOI: 10.3109/10428194.2012.754024
29. Barnes J.A., Lacasce A.S., Feng Y., Toomey C.E., Neuberg D., Michaelson J.S., et al. Evaluation of the addition of rituximab to CODOX-M/ IVAC for Burkitt’s lymphoma: a retrospective analysis. Ann Oncol. 2011;22(8):1859–64. DOI: 10.1093/annonc/mdq677
30. Zhu K.Y., Song K.W., Connors J.M., Leitch H., Barnett M.J., Ramadan K., et al. Excellent real-world outcomes of adults with Burkitt lymphoma treated with CODOX-M/IVAC plus or minus rituximab. Br J Haematol. 2018;181(6):782–90. DOI: 10.1111/bjh.15262
31. Chen M., Wang Z., Fang X., Yao Y., Ren Q., Chen Z., et al. Modified R-CODOX-M/IVAC chemotherapy regimens in Chinese patients with untreated sporadic Burkitt lymphoma. Cancer Biol Med. 2021;18(3):833–40. DOI: 10.20892/j.issn.2095-3941.2020.0314
32. Thomas D.A., Faderl S., O’Brien S., Bueso-Ramos C., Cortes J., Garcia-Manero G., et al. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer. 2006;106(7):1569–80. DOI: 10.1002/cncr.21776
33. Holte H., Leppä S., Björkholm M., Fluge O., Jyrkkiö S., Delabie J., et al. Dose-densified chemoimmunotherapy followed by systemic central nervous system prophylaxis for younger high-risk diffuse large B-cell/ follicular grade 3 lymphoma patients: results of a phase II Nordic Lymphoma Group study. Ann Oncol. 2013;24(5):1385–92. DOI: 10.1093/annonc/mds621
34. Gupta N.K., Nolan A., Omuro A., Reid E.G., Wang C.C., Mannis G., et al. Long-term survival in AIDS-related primary central nervous system lymphoma. Neuro Oncol. 2017;19(1):99–108. DOI: 10.1093/neuonc/now155
35. Gijs P.J., Clerc O. Long-term remission of AIDS-related primary central nervous system lymphoma in a patient under antiretroviral therapy: a case report and review of the literature. AIDS Res Ther. 2021;18(1):76. DOI: 10.1186/s12981-021-00403-6
36. Jin M., Yang Z., Li J., Liu X., Wu Z. Factors Influencing Survival Status of HIV/AIDS after HAART in Huzhou City, Eastern China. Can J Infect Dis Med Microbiol. 2022;2022:2787731. DOI: 10.1155/2022/2787731
37. Epeldegui M., Martínez-Maza O. Immune ACTIVATION: CONTRIBUTION to AIDS-associated Non-Hodgkin lymphoma. For Immunopathol Dis Therap. 2015;6(1–2):79–90. DOI: 10.1615/ForumImmunDisTher.2016014177
38. Nagai H., Odawara T., Ajisawa A., Tanuma J., Hagiwara S., Watanabe T., et al. Whole brain radiation alone produces favourable outcomes for AIDS-related primary central nervous system lymphoma in the HAART era. Eur J Haematol. 2010;84(6):499–505. DOI: 10.1111/j.1600-0609.2010.01424.x
39. Brandsma D., Bromberg J.E.C. Primary CNS lymphoma in HIV infection. Handb Clin Neurol. 2018;152:177–86. DOI: 10.1016/B978-0-444-63849-6.00014-1
40. Wong, A.B., Tseng A.D. HIV oncology handbook. Antiretroviral interactions with chemotherapy regimens. Toronto; 2014.
41. Major A., Smith S.M. DA-R-EPOCH vs R-CHOP in DLBCL: How do we choose? Clin Adv Hematol Oncol. 2021;19(11):698–709. PMID: 34807015
42. Mead G.M., Barrans S.L., Qian W., Walewski J., Radford J.A., Wolf M., et al. A prospective clinicopathologic study of dose-modified CODOXM/IVAC in patients with sporadic Burkitt lymphoma defined using cytogenetic and immunophenotypic criteria (MRC/NCRI LY10 trial). Blood. 2008;112(6):2248–60. DOI: 10.1182/blood-2008-03-145128
Review
For citations:
Dudina G.A., Mabudzada Ch.K., Ogannisyan A.A., Nemikin V.N. HIV-associated lymphomas. Creative surgery and oncology. 2022;12(4):320-327. (In Russ.) https://doi.org/10.24060/2076-3093-2022-12-4-320-327