Potential for application of hydroxyapatite-based bone grafting materials in spine surgery
https://doi.org/10.24060/2076-3093-2022-12-4-337-344
Abstract
The expansion in the number of primary joint replacements worldwide is causing a rise in revision joint replacements due to bacterial infection. Revision surgery with cementless implants appears to be beneficial for long-term outcome, and using antibiotic-impregnated bone grafts can control infection and provide good implant support. Autologous bone graft s (autografts) areused in surgery to fill defects and impaction bone grafting in spinal reconstruction. Because of their superior osteoinductive ability, autograft sare considered the “gold standard” for these treatments. However, due to a better cost-benefit ratio, allografts are also often used. In case of limited donor availability for autologous or allogeneic bone graft s, bone grafting materials are a reasonable alternative or adjunct. Bone grafting materials combine or are based on different substances. Growth factors of the bone morphogenetic protein family are recombinant proteins that specifically induce bone and cartilage growth. One advantage of bone grafting materials is that they can be combined with several antibiotics. Th e choice of antibiotics should consider possible dose-dependent cellular and pharmacological side effects at the implantation site, as well as be based on antimicrobial efficacy. Thus, microbiologists, pharmacologists and surgeons must decide together which combination is more appropriate. Bone grafting materials with active ingredient supplements are considered to be combination drugs, characterised by a primary effect (bone replacement function) and a secondary effect (prevention of bacterial recolonization of the bone grafting materials). Both functions must be clinically validated during the registration process as a Class III medical device. Currently, only a few combination products are available on the market. In this review, we considered the existing hydroxyapatite-based bone grafting materials and the potential for their use in spine surgery.
About the Authors
U. F. MukhametovRussian Federation
Ural F. Mukhametov — Cand. Sci. (Med.), Trauma and Orthopaedic Unit
Ufa
S. V. Lyulin
Russian Federation
Sergey V. Lyulin — Dr. Sci. (Med.), Spine Surgery and Neurosurgery Unit
Chelyabinsk
D. Yu. Borzunov
Russian Federation
Dmitry Yu. Borzunov — Dr. Sci. (Med.), Prof., Department
of Traumatology and Orthopaedics
Yekaterinburg
References
1. Fink B., Schlumberger M. Antibiotic therapy alone does not have a high success rate in cases of unexpected positive cultures in intraoperative samples from hip and knee prosthesis revision. BMC Musculoskelet Disord. 2020;21(1):786. DOI: 10.1186/s12891-020-03799-w
2. Maji K., Dasgupta S. Hydroxyapatite-chitosan and gelatin based scaffold for bone tissue engineering. Transactions of the Indian Ceramic Society. 2014;73:110–4. DOI: 10.1080/0371750X.2014.922424
3. Sharma C., Dinda A.K., Potdar P.D., Chou C.F., Mishra N.C. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2016;64:416–27. DOI: 10.1016/j.msec.2016.03.060
4. Maji K., Dasgupta S. Characterization and in vitro evaluation of gelatin-chitosan scaffold reinforced with bioceramic nanoparticles for bone tissue engineering. J Mat Res. 2019;34(16):2807–18. DOI: 10.1557/jmr.2019.170
5. Hinsenkamp M., Muylle L., Eastlund T., Fehily D., Noel L., Strong D.M. Adverse reactions and events related to musculoskeletal allografts: reviewed by the World Health Organisation Project NOTIFY. Int Orthop. 2012;36(3):633–41. DOI: 10.1007/s00264-011-1391-7
6. Coraça-Huber D.C., Nogler M., Kühn K.D. Potential of allogeneic bone grafts as antibiotic carriers: Effect of different preparation processes on efficacy. Orthopade. 2018;47(1):30–8. DOI: 10.1007/s00132-017-3507-2
7. Ebrahimi M., Botelho M., Lu W. Synthesis and characterization of biomimetic bioceramic nanoparticles with optimized physicochemical properties for bone tissue engineering. J Biomed Mat Res. 2019;107:1654–66. DOI: 10.1002/jbm.a.36681
8. Mansor A., Ariffin A.F., Yusof N., Mohd S., Ramalingam S., Md Saad A.P., et al. Effects of processing and gamma radiation on mechanical properties and organic composition of frozen, freeze-dried and demineralised human cortical bone allograft. Cell Tissue Bank. 2022 May 25. DOI: 10.1007/s10561-022-10013-9
9. Elhendawi H., Felfel R.M., Bothaina M., Abd El-Hady, Reicha F.M. Effect of synthesis temperature on the crystallization and growth of in situ prepared nanohydroxyapatite in chitosan matrix. ISRN Biomaterials. 2014;5:1–8. DOI: 10.1155/2014/897468
10. Buchholz H.W., Engelbrecht H. Depot effects of various antibiotics mixed with Palacos resins. Chirurg. 1970;41(11):511–5. PMID: 5487941
11. Lindsey R.W., Probe R., Miclau T., Alexander J.W., Perren S.M. The effects of antibiotic-impregnated autogeneic cancellous bone grafton bone healing. Clin Orthop Relat Res. 1993;291:303–12. DOI: 10.1097/00003086-199306000-00035
12. Goldberg V.M. Selection of bone grafts for revision total hip arthroplasty. Clin Orthop Relat Res. 2000;381:68–76. DOI: 10.1097/00003086-200012000-00008
13. Barckman J., Baas J., Sorensen M., Lange J., Bechtold J.E., Soballe K. Does tobramycin impregnation of allograft bone affect implant fixation?—an experimental study in 12 dogs. J Biomed Mater Res Part B Appl Biomater. 2014;102(1):173–80. DOI: 10.1002/jbm.b.32993
14. Prokes L., Snejdrova E., Soukup T., Malakova J., Frolov V., Loskot J., et al. Allogeneic bone impregnated with biodegradable depot delivery systems for the local treatment of joint replacement infections: an in vitro study. Molecules. 2022;27(19):6487. DOI: 10.3390/molecules27196487
15. Ishiguro S., Asanuma K., Tamaki T., Oinuma K., Sudo A. A case of cementless impaction bone graft in a revision total hip arthroplasty requiring calcar reconstruction. Case Rep Orthop. 2021;2021:8811593. DOI: 10.1155/2021/8811593
16. Chou P.H., Lin H.H., Yao Y.C., Chang M.C., Liu C.L., Wang S.T. Does local vancomycin powder impregnated with autogenous bone graft and bone substitute decrease the risk of deep surgical site infection in degenerative lumbar spine fusion surgery?-An ambispective study. BMC Musculoskelet Disord. 2022;23(1):853. DOI: 10.1186/s12891-022-05802-y
17. Xu H., Yang J., Xie J., Huang Z., Huang Q., Cao G., et al. Efficacy and safety of intrawound vancomycin in primary hip and knee arthroplasty. Bone Joint Res. 2020;9(11):778–88. DOI: 10.1302/2046-3758.911.BJR-2020-0190.R2
18. Erivan R., Lopez-Chicon P., Fariñas O., Perez Prieto D., Grau S., Boisgard S., et al. Which type of bone releases the most vancomycin? Comparison of spongious bone, cortical powder and cortico-spongious bone. Cell Tissue Bank. 2020;21(1):131–7. DOI: 10.1007/s10561-019-09806-2
19. Bullens P.H., Minderhoud N.M., de Waal Malefijt M.C., Veth R.P., Buma P., Schreuder H.W. Survival of massive allografts in segmental oncological bone defect reconstructions. Int Orthop. 2009;33(3):757–60. DOI: 10.1007/s00264-008-0700-2
20. Zuh S.G., Zazgyva A., Gergely I., Pop T.S. Acetabuloplasty with bone grafting in uncemented hip replacement for protrusion. Int Orthop. 2015;39(9):1757–63. DOI: 10.1007/s00264-015-2804-9
21. Wilson M.J., Hook S., Whitehouse S.L., Timperley A.J., Gie G.A. Femoral impaction bone grafting in revision hip arthroplasty: 705 cases from the originating centre. Bone Joint J. 2016;98-B(12):1611–9. DOI: 10.1302/0301-620X.98B12.37414
22. Frommelt L. Indikation für die zugabe von antibiotika. In: Jerosch J., Katthagen B.D., Pruß A. (Hrsg) Knochentransplantation. 2012;S151–4.
23. Kühn K.D., Höntzsch D. Augmentation with PMMA cement. Unfallchirurg. 2015;118(9):737–48. DOI: 10.1007/s00113-015-0059-y
24. Wekwejt M., Michalska-Sionkowska M., Bartmański M., Nadolska M., Łukowicz K., Pałubicka A., et al. Influence of several biodegradable components added to pure and nanosilver-doped PMMA bone cements on its biological and mechanical properties. Mater Sci Eng C Mater Biol Appl. 2020;117:111286. DOI: 10.1016/j.msec.2020.111286
25. Götte S. Osteologie — 100 Jahre. Orthopäde. 2001;30:805–11.
26. Zhao R., Yang R., Cooper P.R., Khurshid Z., Shavandi A., Ratnayake J. Bone grafts and substitutes in dentistry: a review of current trends and developments. Molecules. 2021;26(10):3007. DOI: 10.3390/molecules26103007
27. Zaki J., Yusuf N., El-Khadem A., Scholten R.J.P.M., Jenniskens K. Efficacy of bone-substitute materials use in immediate dental implant placement: A systematic review and meta-analysis. Clin Implant Dent Relat Res. 2021;23(4):506–19. DOI: 10.1111/cid.13014
28. Rueger J.M. Bone substitutes. State of the art and: what lies ahead? Unfallchirurg. 1996;99(3):228–36. PMID: 8685730
29. Soldner E., Herr G. Knochen, Knochentransplantate und Knochenersatzmaterialien. Trauma Berufskr. 2001;3:256–69. DOI: 10.1007/s10039-001-0503-9
30. Ferguson J., Diefenbach M., McNally M. Ceramic biocomposites as biodegradable antibiotic carriers in treatment of bone infection. J Bone Jt Infect. 2017;2(1):38–49. DOI: 10.7150/jbji.17234
31. Hettwer W. Synthetischer Knochenersatz. Orthopäde. 2017;46:688–700. DOI: 10.1007/s00132-017-3447-x
32. Roberts T.T., Rosenbaum A.J. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114–24. DOI: 10.4161/org.23306
33. Ochsner P.E., Borens O., Bodler P.M., Broger I., Eich G., Maurer T., et al. Infektion des Bewegungsapparates. Grandvaux: Eigenverlag swiss orthopaedics; 2014.
34. Khan S.N., Tomin E., Lane J.M. Clinical applications of bone graft substitutes. Orthop Clin North Am. 2000;31(3):389–98. DOI: 10.1016/s0030-5898(05)70158-9
35. Allison D.C., Lindberg A.W., Samimi B., Mirzayan R., Menendez L.R. A comparison of mineral bone graft substitutes for bone defects. US Oncol Hematol. 2011;7(1):38–49. DOI: 10.17925/OHR.2011.07.1.38
36. Bösebeck H., Büchner H. Struktur, Wirkmechanismen und Einsatzgebiete neuer Knochenersatzsubstanzen und Knochenregenerationsmaterialien. In: Peters K., König D. (Hrsg) Fortbildung Osteologie. Berlin: Springer; 2010. Deutsch.
37. van Vugt T.A., Geurts J.A.P., Arts J.J., Lindforts N.C. Biomaterials in treatment of orthopedic infections. In: Arts J.J., Geurts J.A.P. (eds) Management of periprosthetic joint infections (PJIs). Swaston: Woodhead Publ.; 2016.
38. Boot W., Vogely H.C. Prophylaxis for implantrelated infections: current state of the art. In: Kühn (ed) Management of periprosthetic joint infection. Heidelberg: Springer; 2018.
39. Enax J., Janus A.M., Raabe D., Epple M., Fabritius H.O. Ultrastructu - ral organization and micromechanical properties of shark tooth enameloid. Acta Biomater. 2014;10:3959–68. DOI: 10.1016/j.actbio.2014.04.028
40. Schnürer S.M., Gopp U., Kühn K.D., Breusch S.J. Knochenersatzwerkstoffe. Orthopäde. 2003;32:2–10. Deutsch. DOI: 10.1007/s00132-002-0407-9
41. Zhang E., Zhang W., Lv T., Li J., Dai J., Zhang F., et al. Insulating and robust ceramic nanorod aerogels with high-temperature resistance over 1400 C. ACS Appl Mater Interfaces. 2021;13(17):20548–58. DOI: 10.1021/acsami.1c02501
42. Barbeck M., Jung O., Smeets R., Gosau M., Schnettler R., Rider P., et al. Implantation of an injectable bone substitute material enables integration following the principles of guided bone regeneration. In Vivo. 2020;34(2):557–68. DOI: 10.21873/invivo.11808
43. Chen J., Ashames A., Buabeid M.A., Fahelelbom K.M., Ijaz M., Murtaza G. Nanocomposites drug delivery systems for the healing of bone fractures. Int J Pharm. 2020;585:119477. DOI: 10.1016/j.ijpharm.2020.119477
44. Fernandez de Grado G., Keller L., Idoux-Gillet Y., Wagner Q., Musset A.M., Benkirane-Jessel N., et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018;9:2041731418776819. DOI: 10.1177/2041731418776819
45. He Q., Chen H., Huang L., Dong J., Guo D., Mao M., et al. Porous surface modified bioactive bone cement for enhanced bone bonding. PLoS One 2012;7(8):e42525. DOI: 10.1371/journal.pone.0042525
46. Chen C.-C., Wang C.-W., Hsueh N.-S., Ding S.-J. Improvement of in vitro physicochemical properties and osteogenic activity of calcium sulfate cement for bone repair by dicalcium silicate. J Alloys Compd. 2014;585:25–31. DOI: 10.1016/j.jallcom.2013.09.138
47. Shirtliff M.E., Mader J.T., Camper A.K. Molecular interaction in biofilms. Chem Biol. 2002;9(8):859–71.
48. Korkusuz F., Uchida A., Shinto Y., Araki N., Inoue K., Ono K. Experimental implant-related osteomyelitis treated by antibioticcalcium hydroxyapatite ceramic composites. J Bone Joint Surg Br. 1993;75(1):111–4. DOI: 10.1302/0301-620X.75B1.8380599
49. Rauschmann M.A., Wichelhaus T.A., Stirnal V., Dingeldein E., Zichner L., Schnettler R., et al. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials. 2005;26(15):2677–84. DOI: 10.1016/j.biomaterials.2004.06.045
50. Romano C.L., Logoluso N., Meani E., Romano D., De Vecchi E., Vassena C., et al. A comparative study of the use of bioactive glass S53P4 and antibiotic-loaded calcium-based bone substitutes in the treatment of chronic osteomyelitis. Bone Joint J. 2014;96(6):845–50. DOI: 10.1302/0301-620X.96B6.33014
51. Fosca M., Rau J.V., Uskoković V. Factors influencing the drug release from calcium phosphate cements. Bioact Mater. 2021;7:341–63. DOI: 10.1016/j.bioactmat.2021.05.032
52. Usai P., Campanella V., Sotgiu G., Spano G., Pinna R., Eramo S., et al. Effectiveness of calcium phosphate desensitising agents in dental hypersensitivity over 24 weeks of clinical evaluation. Nanomaterials (Basel). 2019;9(12):1748. DOI: 10.3390/nano9121748
53. Kurien T., Pearson R.G., Scammell B.E. Bone graft substitutes current lyavailable inorthopaedic practice the evidence for their use. Bone Joint J. 2013;95(5):583–97. DOI: 10.1302/0301-620X.95B5.30286
54. Madhumathi K., Rubaiya Y., Doble M., Venkateswari R., Sampath Kumar T.S. Antibacterial, anti-inflammatory, and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers-in vitro and in vivo studies. Drug Deliv Transl Res. 2018;8(5):1066–77. DOI: 10.1007/s13346-018-0532-6
55. Lang Z.G., Zhang X., Guo Q., Liang Y.X., Yuan F. Clinical observations of vancomycin-loaded calcium phosphate cement in the 1-stage treatment of chronic osteomyelitis: a randomized trial. Ann Palliat Med. 2021;10(6):6706–14. DOI: 10.21037/apm-21-1290
56. Uskokovic V., Desai T.A. Phase composition control of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis. II. Antibacterial and osteoblastic response. J Biomed Mater Res A. 2013;101(5):1427–36. DOI: 10.1002/jbm.a.34437
57. Epple M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater. 2018;77:1–14. DOI: 10.1016/j.actbio.2018.07.036
Review
For citations:
Mukhametov U.F., Lyulin S.V., Borzunov D.Yu. Potential for application of hydroxyapatite-based bone grafting materials in spine surgery. Creative surgery and oncology. 2022;12(4):337-344. (In Russ.) https://doi.org/10.24060/2076-3093-2022-12-4-337-344