Preview

Creative surgery and oncology

Advanced search

Carbamazepine for Epilepsy Treatment in Glioblastoma Patients: A Review and a Clinical Case

https://doi.org/10.24060/2076-3093-2025-15-3-287-298

Abstract

Glioblastoma is a malignant brain tumor characterized by an aggressive course, resistance to chemoradiation and immunotherapy, recurrence, and high mortality. The incidence of glioblastoma ranges from 3.2 to 5 per 100,000 people. In recent years, an increase in the incidence of glioblastoma among patients under 45 years of age has been observed. Epilepsy develops in 25–60% of the patients, reducing their quality of life and worsening the prognosis of the disease. In 35–40% of the patients, epileptic seizures are the first manifestation of glioblastoma, being also possible during its treatment or relapse. The risk of epilepsy development and its severity are affected by the tumor volume, growth pattern, localization, presence of preoperative seizures, IDH1-2 mutations, and residual tumor volume. The epilepsy associated with glioblastoma is characterized by a multifactorial and poorly understood etiopathogenesis. The leading role in epileptogenesis is attributed to dysfunction of ion channels with an increase in the level of extracellular K+, hyperexpression of SCN1A and SCN2A alpha subunits of Na+ channels, as well as dysregulatory Ca2+ channels. As a result, in the peritumoral zone, the homeostasis of inhibitory and excitatory neurotransmitters, repolarization/depolarization processes, and electrochemical interactions between neurons and tumor cells are disrupted. Due to its high clinical effectiveness, carbamazepine is most often used to treat glioblastoma-associated epilepsy. The antiepileptic activity of carbamazepine is related to the inactivation of Na+ channels, potentiation of potential-dependent K+, Cl channels, the GABA-ergic system, inhibition of glutamate release, and the effect on the homeostasis of other neurotransmitter systems in the brain. The ability of carbamazepine to suppress cell proliferation in a number of malignant glioma cell lines is also of high significance. Although carbamazepine is an inducer of liver microsomal enzymes, it does not reduce the effectiveness of temozolomide, which is not metabolized in the liver. Possible adverse carbamazepine-associated reactions do not require its discontinuation. Given the high clinical effectiveness of carbamazepine, further studies of its pleiotropic effects in patients with epilepsy associated with glioblastoma and other malignant brain tumors are required.

About the Authors

Lyaysan F. Mufazalova
Bashkir State Medical University
Russian Federation

Lyaysan F. Mufazalova — Cand. Sci. (Med.), Department of Pharmacology

Ufa



Natalya A. Mufazalova
Bashkir State Medical University
Russian Federation

Natalya A. Mufazalova — Dr. Sci. (Med.), Prof., Department of Pharmacology

Ufa



Airat B. Imaev
Republican Oncology Clinic
Russian Federation

Airat B. Imaev — Cand. Sci. (Med.), Department of Antitumor Drug Therapy No. 2

Ufa



Elena F. Farkhutdinova
Republican Oncology Clinic
Russian Federation

Elena F. Farkhutdinova — Outpatient department

Ufa



Sofya S. Bezrukova
Bashkir State Medical University
Russian Federation

Sofya S. Bezrukova — student

Ufa



Bulat Yu. Dushanbaev
Bashkir State Medical University
Russian Federation

Bulat Y. Dushanbaev — student

Ufa



References

1. Hu S., Kao H.Y., Yang T., Wang Y. Early and Bi-hemispheric seizure onset in a rat glioblastoma Multiforme model. Neurosci Lett. 2022;766:136351. DOI: 10.1016/j.neulet.2021.136351

2. Wang G.M., Cioffi G., Patil N., Waite K.A., Lanese R., Ostrom Q.T., et al. Importance of the intersection of age and sex to understand variation in incidence and survival for primary malignant gliomas. Neuro Oncol. 2022;24(2):302–10. DOI: 10.1093/neuonc/noab199

3. Chehade G., Lawson T.M., Lelotte J., Daoud L., Di Perri D., Whenham N., et al. Long-term survival in patients with IDH-wildtype glioblastoma: clinical and molecular characteristics. ActaNeurochir (Wien). 2023;165(4):1075–85. DOI: 10.1007/s00701-023-05544-3

4. Salvalaggio A., Pini L., Bertoldo A., Corbetta M. Glioblastoma and brain connectivity: the need for a paradigm shift. Lancet Neurol. 2024;23(7):740–8. DOI: 10.1016/S1474-4422(24)00160-1

5. Yanovich-Arad G., Ofek P., Yeini E., Mardamshina M., Danilevsky A., Shomron N., et al. Proteogenomics of glioblastoma associates molecular patterns with survival. Cell Rep. 2021;34(9):108787. DOI: 10.1016/j.celrep.2021.108787

6. Hamad A., Yusubalieva G.M., Baklaushev V.P., Chumakov P.M., Lipatova A.V. Recent developments in glioblastoma therapy: oncolytic viruses and emerging future strategies. Viruses. 2023;15(2):547. DOI: 10.3390/v15020547

7. Roda D., Veiga P., Melo J.B., Carreira I.M., Ribeiro I.P. Principles in the management of glioblastoma. Genes. 2024;15(4):501. DOI: 10.3390/genes15040501

8. Coppola A., Hernandez-Hernandez L., Balestrini S., Krithika S., Moran N., Hale B., et al. Cortical myoclonus and epilepsy in a family with a new SLC20A2 mutation. J Neurol. 2020;267(8):2221–7. DOI: 10.1007/s00415-020-09821-4

9. de Bruin M.E., van der Meer P.B., Dirven L., Taphoorn M.J.B., Koekkoek J.A.F. Efficacy of antiepileptic drugs in glioma patients with epilepsy: a systematic review. NeurooncolPract. 2021;8(5):501–17. DOI: 10.1093/nop/npab030

10. Rossi J., Cavallieri F., Bassi M.C., Biagini G., Rizzi R., Russo M., et al. Efficacy and tolerability of perampanel in brain tumor-related epilepsy: a systematic review. Biomedicines. 2023;11(3):651. DOI: 10.3390/biomedicines11030651

11. Soeung V., Puchalski R.B., Noebels J.L. The complex molecular epileptogenesis landscape of glioblastoma. Cell Rep Med. 2024;5(8):101691. DOI: 10.1016/j.xcrm.2024.101691

12. Moher D., Liberati A., Tetzlaff J., Altman D.G. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;3(3):e123–30. DOI: 10.1136/bmj.b2535

13. Xu K., Zhang C., WeiGao, Shi Y., Pu S., Huang N., et al. The involvement of circRNAs in molecular processes and their potential use in therapy and diagnostics for glioblastoma. Gene. 2025;940:149214. DOI: 10.1016/j.gene.2025.149214

14. Cruz N., Herculano-Carvalho M., Roque D., Faria C.C., Cascao R., Ferreira H.A., et al. Highlighted advances in therapies for difficultto-treat brain tumours such as glioblastoma. Pharmaceutics. 2023 15(3):928. DOI: 10.3390/pharmaceutics 15030928

15. An J., Freeman E., Stewart I.J., Dore M. Association of traumatic brain injury and glioblastoma multiforme: a case series. Mil Med. 2024;189(1–2):e391–5. DOI: 10.1093/milmed/usad162

16. Lange F., Hornschemeyer J., Kirschstein T. Glutamatergic mechanisms in glioblastoma and tumor-associated epilepsy. Cells. 2021;10(5):1226. DOI: 10.3390/cells10051226

17. Stella M., Baiardi G., Pasquariello S., Sacco F., Dellacasagrande I., Corsaro A., et al. Antitumor potential of antiepileptic drugs in human glioblastoma: pharmacological targets and clinical benefits. Biomedicines. 2023;11(2):582. DOI: 10.3390/biomedicines11020582

18. Molinaro A.M., Hervey-Jumper S., Morshed R.A., Young J., Han S.J., Chunduru P., et al. Association of maximal extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol. 2020;6(4):495–503. DOI: 10.1001/jamaoncol.2019.6143

19. Schaff L.R., Mellinghoff I.K. Glioblastoma and other primary brain malignancies in adults: a review. JAMA. 2023;329(7):574–87. DOI: 10.1001/jama.2023.0023

20. Rakhmatullina I.R., Zolotukhin K.N., Samorodov A.V. Implementation of “Point-of-care testing” technologies in intensive care. Science and innovation in medicine. 2017;4(8):23–27 (In Russ.).

21. Zolotukhin K.N., Polyakov I.V., Samorodov A.V. Comparative analysis of central hemodynamic monitoring by the MPR 6-03 “Triton” and “Picco plus” monitors. Togliatti Medical Council. 2012;3–4:19–23 (In Russ.).

22. Hills K.E., Kostarelos K., Wykes R.C. Converging mechanisms of epileptogenesis and their insight in glioblastoma. Front. Mol. Neurosci. 2022;15:903115. DOI: 10.3389/fnmol.2022.903115

23. Verma S., Malviya R., Uniyal P. Survival of patients with primary brain tumor: a data analysis of 10 years. Curr Pharm Des. 2024;30(15):1129– 32. DOI: 10.2174/0113816128306113240328050608

24. Grabowski M.M., Sankey E.W., Ryan K.J., Chongsathidkiet P., Lorrey S.J., Wilkinson D.S., et al. Immune suppression in gliomas. J Neurooncol. 2021;151(1):3–12. DOI: 10.1007/s11060-020-03483-y

25. Duan X., Yang B., Zhao C., Tie B., Cao L., Gao Y. Prognostic value of preoperative hematological markers in patients with glioblastoma multiforme and construction of random survival forest model. BMC Cancer. 2023;23(1):432. DOI: 10.1186/s12885-023-10889-0

26. Tong E., Horsley P., Wheeler H., Wong M., Venkatesha V., Chan J., et al. Hypofractionated re-irradiation with bevacizumab for relapsed chemorefractory glioblastoma after prior high dose radiotherapy: a feasible option for patients with large-volume relapse. J Neurooncol. 2024;168(1):69–76. DOI: 10.1007/s11060-024-04643-0

27. Wang Yi, Mufazalova N.A., Mufazalova L.F., Ilyasova N.V., Muradova R.R., Kiyomov I.E., et al. Potential use of perampanel in the treatment of epilepsy in patients with malignant brain gliomas. Reviews on Clinical Pharmacology and Drug Therapy. 2024;22(3):223–36 (In Russ.) DOI: 10.17816/RCF629243

28. Urakov A.L., Nikitina I.L., Klen E.E., Wang Y., Samorodov A.V. Prospects for the pharmacological validation of the use of platelets as a “peripheral model” of neurons. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(4):307–17 (In Russ.) DOI: 10.17816/RCF568907

29. Hertler C., Felsberg J., Gramatzki D., Le Rhun E., Clarke J., Soffietti R., et al. Long-term survival with IDH wildtype glioblastoma: first results from the ETERNITY Brain Tumor Funders’ Collaborative Consortium (EORTC 1419). Eur J Cancer. 2023;189:112913. DOI: 10.1016/j.ejca.2023.05.002

30. Climans S.A., Brandes A.A., Cairncross J.G., Ding K., Fay M., Laperriere N., et al. Temozolomide and seizure outcomes in a randomized clinical trial of elderly glioblastoma patients. J. Neurooncol. 2020;149(1):65–71. DOI: 10.1007/s11060-020-03573-x

31. Sharma P., Aaroe A., Liang J., Puduvalli V.K. Tumor microenvironment in glioblastoma: Current and emerging concepts. Neurooncol Adv. 2023;5(1):vdad009. DOI: 10.1093/noajnl/vdad009

32. Senhaji N., SqualliHoussaini A., Lamrabet S., Louati S., Bennis S. Molecular and circulating biomarkers in patients with glioblastoma. Int J Mol Sci. 2022;23(13):7474. DOI: 10.3390/ijms23137474

33. Du Y., Li R., Fu D., Zhang B., Cui A., Shao Y., et al. Multi-omics technologies and molecular biomarkers in brain tumor-related epilepsy. CNS NeurosciTher. 2024;30(4):e14717. DOI: 10.1111/cns.14717

34. Yagi C., Tatsuoka J., Sano E., Hanashima Y., Ozawa Y., Yoshimura S., et al. Anti-tumor effects of anti-epileptic drugs in malignant glioma cells. Oncol Rep. 2022;48(6):216. DOI: 10.3892/or.2022.8431

35. Lopez-Anguita S., Gutierrez-Ruano B., Munoz-Gonzalez A., Valenzuela-Rojas F.J., Olmedilla-Gonzаlez M.N. Epilepsy in cancer patients: primary prevention and the importance of high-risk patient screening. Rev Neurol. 2022;75(11):349–56. DOI: 10.33588/rn.7511.2022200

36. Sanchez-Villalobos J.M., Aledo-Serrano A., Villegas-Martinez I., Shaikh M.F., Alcaraz M. Epilepsy treatment in neuro-oncology: A rationale for drug choice in common clinical scenarios. Front Pharmacol. 2022;13:991244. DOI: 10.3389/fphar.2022.991244

37. Tabaee Damavandi P., Pasini F., Fanella G., Cereda G.S., Mainini G., DiFrancesco J.C., et al. Perampanel in brain tumor-related epilepsy: a systematic review. Brain Sci. 2023;13(2):326. DOI: 10.3390/brainsci13020326

38. Demetz M., Hecker C., Salim H.A., Krigers A., Steinbacher J., Machegger L., et al. Epilepsy as primary tumor manifestation correlates with patient status, age, and tumor volume but not with survival in elderly glioblastoma patients: a retrospective bicentric analysis. Neurosurg Rev. 2025;48(1):264. DOI: 10.1007/s10143-025-03397-1

39. Loscher W., Klein P. The pharmacology and clinical efficacy of antiseizure medications: from bromide salts to cenobamate and beyond. CNS Drugs. 2021;35(9):1033–4. DOI: 10.1007/s40263-021-00827-8

40. Zhang Y., Duan W., Chen L., Chen J., Xu W., Fan Q., et al. Potassium ion channel modulation at cancer-neural interface enhances neuronal excitability in epileptogenic glioblastoma multiforme. Neuron. 2025;113(2):225–43. DOI: 10.1016/j.neuron.2024.10.016

41. Ruda R., Mo F., Pellerino A. Epilepsy in brain metastasis: an emerging entity. Curr Treat Options Neurol. 2020;22(2):6. DOI: 10.1007/s11940-020-0613-y

42. Armstrong T.S., Grant R., Gilbert M.R., Lee J.W., Norden A.D. Epilepsy in glioma patients: Mechanisms, management, and impact of anticonvulsant therapy. Neuro-Oncology. 2016;18(6):779–89. DOI: 10.1093/neuonc/nov269

43. Radin D.P., Tsirka S.E. Interactions between tumor cells, neurons, and microglia in the glioma microenvironment. Int. J. Mol. Sci. 2020;21(22):8476. DOI: 10.3390/ijms21228476

44. Prager B.C., Bhargava S., Mahadev V., Hubert C.G., Rich J.N. Glioblastoma stem cells: driving resilience through chaos. Trends Cancer. 2020;6(3):223–35. DOI: 10.1016/j.trecan.2020.01.009

45. Joghataei M.T., Bakhtiarzadeh F., Dehghan S., Ketabforoush A.H.M.E., Golab F., Zarbakhsh S., et al. The role of neurotransmitters in glioblastoma multiforme-associated seizures. Int J Dev Neurosci. 2023;83(8):677–90. DOI: 10.1002/jdn.10294

46. Wang Yu., Bulatova N.R., Klen E.E., Rozit G.A., Nikitina I.L., Startseva L.V., et al. Efficacy of 4-(2-(4-nttrophenyl)-2-oxoethyl)-1- (thietane-3-yl)-1h-1,2,4-triazol-4 bromide in the rat model of inferior vena cava thrombosis. Translational medicine. 2024;11(1):19–27. DOI: 10.18705/2311-4495-2024-11-1-19-27

47. Kamilov F.K., Timirkhanova G.A., Samorodov A.V., Khaliullin F.A. Choosing potential dissolution medium to study the influence of water-insoluble substances on aggregation of platelets within preclinical studies under conditions in vitro. Biology and Medicine. 2013; 5(1):15–9.

48. Maschio M., Aguglia U., Avanzini G., Banfi P., Buttinelli C., Capovilla G, et al. Management of epilepsy in brain tumors. Neurol Sci. 2019;40(10):2217–34. DOI: 10.1007/s10072-019-04025-9

49. Mufazalova N.A., Valeeva L.A., Mufazalova L.F., Batrakova K.V. Adverse drug reactions. Drug Interactions. Anticonvulsants. Ufa; 2021 (In Russ.).

50. Wang Y., Yang H., Li N., Wang L., Guo C., Ma W., et al. A novel ubiquitin ligase adaptor PTPRN suppresses seizure susceptibility through endocytosis of NaV1.2 sodium channels. Adv Sci. 2024;11(29):e2400560. DOI: 10.1002/ advs.202400560

51. Vasilenko A.V., Ulitin A.Yu., Lebedev I.A., Ablaev N.R., Dikonenko M.V., Mansurov A.S., et al. Epilepsy in patients with glioblastoma: mechanisms of occurrence and problems of treatment (part 2). Medical alphabet. 2023;(33):13–9 (In Russ.). DOI: 10.33667/2078-5631-2023-33-13-19

52. Beydoun A., DuPont S., Zhou D., Matta M., Nagire V., Lagae L. Current role of carbamazepine and oxcarbazepine in the management of epilepsy. Seizure. 2020;83:251–63. DOI: 10.1016/j.seizure.2020.10.018

53. Shnayder N.A., Bochanova E.N., Dmitrenko D.V., Nasyrova R.F. Pharmacogenetics of carbamazepine. Epilepsy and Paroxysmal Conditions. 2019;11(4):364–78 (In Russ.). DOI: 10.17749/2077-8333.2019.11.4.364-378

54. Vaiman E., Gayduk A., Strelnik A., Smirnova D., Davydkin I., Fedyashov I., et al. Possible clinical and pharmacogenetic predictors of the efficacy and safety of carbamazepine in post-COVID-19 depression. Psychiatr Danub. 2022;34(8):31–7. PMID: 36170698

55. Zhao G.X., Zhang Z., Cai W.K., Shen M.L., Wang P., He G.H. Associations between CYP3A4, CYP3A5 and SCN1A polymorphisms and carbamazepine metabolism in epilepsy: A meta-analysis. Epilepsy Res. 2021;173:106615. DOI: 10.1016/j.eplepsyres.2021.106615

56. Ortega-Vazquez A., Dorado P., Fricke-Galindo I., Jung-Cook H., Monroy-Jaramillo N., Martinez-Juаrez I.E., et al. CYP2C9, CYP2C19, ABCB1 genetic polymorphisms and phenytoin plasma concentrations in Mexican-Mestizo patients with epilepsy. Pharmacogenomics J. 2016;16(3):286–92. DOI: 10.1038/tpj.2015.45

57. Riffi R., Boughrara W., Chentouf A., Ilias W., Brahim N.M.T., Berrebbah A.A., et al. Pharmacogenetics of carbamazepine: a systematic review on CYP3A4 and CYP3A5 polymorphisms. CNS Neurol Disord Drug Targets. 2024;23(12):1463–73. DOI: 10.2174/0118715273298953240529100325

58. Amos K., Garcia-Bournissen F., Zhao L., Taheri S. Carbamazepineinduced liver injury in an 11-year-old female: Case report and review of the literature. J Paediatr Child Health. 2023;59(1):165–8. DOI: 10.1111/jpc.16200

59. Drokov A.P., Lipatova L.V., Shnayder N.A. Pharmacogenetic markers for metabolic impairments in treatment with valproic acid. Neuroscience and behavioral physiology. 2020;50(1):13–9. DOI: 10.1007/s11055-019-00861-6

60. Manni R., Toscano G., Terzaghi M. Epilepsy and cardiovascular function: seizures and antiepileptic drugs effects. In: Govoni S., Politi P., Vanoli (eds) Brain and Heart Dynamics. Springer; 2020. Р. 507–15. DOI: 10.1007/978-3-030-28008-6_30

61. Rissardo J.P., Caprara A.L.F.. Carbamazepine-, Oxcarbazepine-, Eslicarbazepine-associated movement disorder: a literature review. Clin Neuropharmacol. 2020;43(3):66–80. DOI: 10.1097/WNF.0000000000000387

62. Benit C.P., Vecht C.J. Seizures and cancer: drug interactions of anticonvulsants with chemotherapeutic agents, tyrosine kinase inhibitors and glucocorticoids. Neurooncol. Pract. 2016;3(4):245–60. DOI: 10.1093/nop/npv038

63. Cacho-Diaz B., San-Juan D., Salmeron K., Boyzo C., Lorenzana-Mendoza N. Choice of antiepileptic drugs affects the outcome in cancer patients with seizures. Clin Transl Oncol. 2018;20(12):1571–6. DOI: 10.1007/s12094-018-1892-6

64. Kobylarek D., Iwanowski P., Lewandowska Z., Limphaibool N., Szafranek S., Labrzycka A., et al. Advances in the potential biomarkers of epilepsy. Front Neurol. 2019;10:685. DOI: 10.3389/fneur.2019.00685

65. Cai M., Tang X. Human archaea and associated metabolites in health and disease. Biochemistry. 2022;61(24):2835–40. DOI: 10.1021/acs.biochem.2c00232

66. Zhou T., Wang N., Xu L., Huang H., Yu C., Zhou H. Effects of carbamazepine combined with vitamin B12 on levels of plasma homocysteine, hs-CRP and TNF-α in patients with epilepsy. Exp Ther Med. 2018;15(3):2327–32. DOI: 10.3892/etm.2018.5698


Review

For citations:


Mufazalova L.F., Mufazalova N.A., Imaev A.B., Farkhutdinova E.F., Bezrukova S.S., Dushanbaev B.Yu. Carbamazepine for Epilepsy Treatment in Glioblastoma Patients: A Review and a Clinical Case. Creative surgery and oncology. 2025;15(3):287-298. (In Russ.) https://doi.org/10.24060/2076-3093-2025-15-3-287-298

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)