Preview

Креативная хирургия и онкология

Расширенный поиск

ПРЕДПОСЫЛКИ К ПОНИМАНИЮ МЕХАНИЗМОВ РАЗВИТИЯ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ

https://doi.org/10.24060/2076-3093-2013-0-4-91-95

Аннотация

В статье представлены данные о росте и развитии ткани молочной железы. Приведен подробный морфогенез молочной железы с привязкой процессов, происходящих с эпителием молочной железы в течении жизни женщины, с изменениями стромы. 

Об авторе

Р. Р. Бакиев
Башкирский государственный медицинский университет
Россия


Список литературы

1. Agla J.R., Fridriksdott I.R., Ole W.Petersen, Lone Ronnov-Jensen, Mammary gland stem cells: current status and future challenges // International Journal of Developmental Biology – 2011. – Vol. 55. – P. 719-729.

2. Berg A.H., Combs T.P., Du X., Brownlee M., and Scherer P.E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action // Nat. Med. – 2001. – Vol. 7. – P. 947-953.

3. Bickel P.E., Lodish H.F., and Scherer P.E. Use and applications of subtractive antibody screening // Biotechnol. Genet. Eng. Rev. – 2000. – Vol. 17. – P. 417-430.

4. Brisken C., Park S., Vass T., Lydon J.P., O’malley B.W., and Weinberg R.A. A paracrine role for the epithelial progesterone receptor in mammary gland development // Proc Natl Acad Sci U S A. – 1998. – Vol. 95. – P. 5076-5081.

5. Cancello R., Tounian A., Poitou Ch., and Clement K. Adiposity signals, genetic and body weight regulation in humans // Diabetes Metab. – 2004. – Vol. 30. – P. 215-227.

6. Chamras H., Bagga D., Elstner E., Setoodeh K., Koeffler H.P., and Heber D. Preadipocytes stimulate breast cancer cell growth // Nutr. Cancer. – 1998. – Vol. 32. – P. 59-63.

7. Christine Couldrey, Jaideep Moitra, Charles Vinson, Miriam Anver, Kunio Nagashima, Jeffrey Green. Adipose Tissue: A Vital In Vivo Role in Mammary Gland Development but not Differentiation // Developmental Dynamics. – 2002. – Vol. 223. – P. 459-468 Received 23 July 2001; Accepted 4 December 2001 DOI 10.1002/dvdy.10065 Published online 5 March 2002 in Wiley InterScience (www. interscience.wiley.com).

8. Coleman S., Daniel C.W. Inhibition of mouse mammary ductal morphogenesis and down regulation of the EGF receptor by epidermal growth factor // Dev Biol. – 1990. – Vol. 137. – P. 425-433.

9. Coleman S., Silberstein G.B., Daniel C.W. Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor // Dev Biol. – 1988. – Vol. 127. – P. 304-315.

10. Cunha G.R., Horn Y.K. Role of mesenchymalepithelial interactions in mammary gland development // J Mammary Gland Biol Neoplasia. – 1996. – Vol. 1. – P. 21-35.

11. Cunha G.R. Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate // Cancer – 1994. – Vol. 74. – P. 1030-1044.

12. Daniel C.W., Silberstein G.B. Postnatal development of the rodent mammary gland. In: Neville MC, Daniel CW, editors. The mammary gland; development, regulation, and function // New York: Plenum Press. – 1987. –P. 3-31.

13. Daniel C.W., De Ome K.B., Young J.T., Blair P.B., and Faulkin L.J., Jr. The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study // Proc Natl Acad Sci USA. – 1968. – Vol. 61. – P. 53-60.

14. DiAugustine R.P., Richards R.G., Sebastian J. EGF-related peptides and their receptors in mammary gland development // J Mammary Gland Biol Neoplasia. – 1997. – Vol. 2. – P. 109-117.

15. Engelman J.A., Berg A.H., Lewis R.Y., Lisanti M.P., and Scherer P.E. Tumor necrosis factor-mediated insulin resistance, but not dedifferentiation, is abrogated by MEK1/2 inhibitors in 3T3-L1 adipocytes // Mol. Endocrinol. – 2000. – Vol. 14. – P. 1557-1569.

16. Howlett A.R., and Bissell M.J. The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium // Epithelial Cell Biol. – 1993. – Vol. 2. – P. 79-89.

17. Huss F.R., and Kratz G. Mammary epithelial cell and adipocyte co-culture in a 3-D matrix: the first step towards tissue-engineered human breast tissue // Cells Tissues Organs – 2001. – Vol. 169. – P. 361-367.

18. Johnston P.G., Rondinone C.M., Voeller D., and Allegra C. J. Identification of a protein factor secreted by 3T3-L1 preadipocytes inhibitory for the human MCF-7 breast cancer cell line // Cancer Res. – 1992. – Vol. 52. – P. 6860-6865.

19. Klaus S. Adipose tissue as a regulator of energy balance // Curr. Drug. Targets – 2004. – Vol. 5. – P. 241-250.

20. Kleinberg D.L., Feldman M., Ruan W. IGF-I: an essential factor in terminal end bud formation and ductal morphogenesis // J Mammary Gland Biol Neoplasia. – 2000. – Vol. 5. – P. 7-17.

21. Kleinberg D.L., Niemann W., Flamm E., Cooper P., Babitsky G., Valensi Q. Primate mammary development // J Clin Invest. – 1985. – Vol. 75. – P. 1943-1950.

22. Korach K.S., Couse J.F., Curtis S.W., Washburn T.F., Lindzey J., Kimbro K.S., Eddy E.M., Migliaccio S., Snedeker S.M., Lubahn D.B., Schmoberg D.W., Smith E.P. Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes // Recent Prog Horm Res. – 1996. – Vol. 51. – P.159-188.

23. Kouros-Mehr H., Slorach E.M., Sternlicht M.D., and Werb Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland // Cel.l – 2006. – Vol. 127. – P.1041-1055.

24. Levine J.F., Stockdale F.E. 3Y3-L1 adipocytes promote the growth of mammary epithelium // Exp Cell Res. – 1984. – Vol. 151. – P.112-122.

25. Lydon J.P., DeMayo F.J., Funk C.R., Maui S.K., Huges A.R., Montgomery C.A., Shyamala G., Conneely O.M., O’Malley B.W. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities // Genes Dev. – 1995. – Vol. 9. – P. 2266-2278.

26. Lyons W.R., Li C.H., Johnson R.E. The hormonal control of mammary growth and lactation // Recent Prog Horm Res. – 1985. – Vol. 14. – P. 219-248.

27. Mallepell S., Krust A., Chambon P., and Brisken C. Paracrine signaling through the epithelial estrogen receptor alpha is required for prolifera¬tion and morphogenesis in the mammary gland // Proc Natl Acad Sci USA. – 2006. – Vol. 103. – P. 2196-2201.

28. Manabe Y., Toda S., Miyazaki K., and Sugihara H. Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer-stromal cell interactions // J. Pathol. – 2003. – Vol. 201. – P. 221-228.

29. Moitra J., Mason M.M., Olive M., Krylov D., Gavriola O., Marcus-Samules B., Feigenbaum L., Lee E., Aoyama T., Eckhaus M., Reitman M., Vinson C. Life without white fat: a transgenic mouse // Genes Dev. – 1998. – Vol. 12. – P. 3168-3181.

30. Mora S., and Pessin J. E. An adipocentric view of signaling and intracellular trafficking // Diabetes Metab. Res. Rev. – 2002. – Vol. 18. – P. 345-356.

31. Ormandy C.J., Camus A., Barra J., Damotte D., Lucas B., Buteau H., Edery M., Brousse N., Babinet C., Binart N., Kelly P.A. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse // Genes Dev. – 1997. – Vol. 11. – P. 167-178.

32. Petersen O.W., and Polyak K. Stem cells in the human breast // Cold Spring Harb Perspect Biol. – 2010. – Vol. 2. – P. 3160.

33. Reidy S.P., and Weber J. Leptin: an essential regulator of lipid metabolism // Comp. Biochem. Physiol. A Mol. Integr. Physiol. – 2000. – Vol. 125. – P. 285-298.

34. Richert M.M., Schwertfeger K.L., Ryder J.W., and Anderson S.M. An atlas of mouse mammary gland development // J Mammary Gland Biol Neoplasia. – 2000. – Vol. 5. – P. 227-241.

35. Russell C. Hovey, Lucila Aimo. Diverse and active roles for adipocytes during mammary gland growth and function // Jornal Mammary Gland Biology Neoplasia. – 2010. – Vol. 15. – P. 279-290.

36. Russo J., and Russo I.H. The mammary gland: development, regulation and function // New York: Plenum Press. – 1987.

37. Russo J., and Russo I.H. Development of the human breast // Maturitas. – 2004. – Vol. 49. – P. 2-15.

38. Sakakura T., Sakagami Y., Nishizuka Y. Dual origin of mesenchymal tissues participating in mouse mammary gland embryogenesis // Dev Biol. – 1982. – Vol. 91. – P. 202-207.

39. Sakakura T. Mammary embryogenesis. In: Neville MC, Daniel CW, editors. The mammary gland: development, regulation, and function // New York: Plenum Press. – 1987. – P. 37-63.

40. Scherer P.E., Bickel P.E., Kotler M., and Lodish H.F. Cloning of cell-specific secreted and surface proteins by subtractive antibody screening // Nat. Biotechnol. – 1998. – Vol. 16. – P. 581-586.

41. Scherer P.E., Williams S., Fogliano M., Baldini G., and Lodish H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes // J. Biol. Chem. – 1995. – Vol. 45. – P. 26746-26749.

42. Silberstein G.B. Postnatal mammary gland morphogenesis // Microsc Res Tech. – 2001. – Vol. 52. – P. 155-162.

43. Sun P., Yuan Y., Li A., Li B., and Dai X. Cytokeratin expression during mouse embryonic and early postnatal mammary gland development // Histochem Cell Biol. – 2010. – Vol. 133. – P. 213-221.

44. Sympson C.J., Talhouk R.S., Alexander C.M., Chin J.R., Clift S.M., Bissell M.J., Werb Z. Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression // J Cell Biol. – 1994. – Vol. 125. – P. 681-693.

45. Trayhurn P., and Wood I.S. Adipokines: inflammation and the pleiotropic role of white adipose tissue // Br. J. Nutr. – 2004. – Vol. 92. – P. 347-355.

46. Walden P.D., Ruan W., Feldman M., Kleinberg D.L. Evidence that the mammary fat pad mediates the action of growth hormone in mammary gland development // Endocrinology. – 1998. – Vol. 139. – P. 659-662.

47. Watson C.J., and Khaled W.T. Mammary development in the embryo and adult: a journey of morphogenesis and commitment // Development. – 2008. – Vol. 135. – P. 995-1003.

48. Wiens D., Park C.S., Stockdale F.E. Milk protein expression and ductal morphogenesis in the mammary gland in vitro: hormone dependent and independent phases of adipocyte-mammary epithelial cell interaction // Dev Biol. – 1987. – Vol. 120. – P. 245-258.

49. Wiesen J.F., Young P., Werb Z., Cunha G.R. Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development // Development. – 1999. – Vol. 126. – P. 335-344.

50. Zangani D., Darcy K.M., Shoemaker S., and Ip M.M. Adipocyteepithelial interactions regulate the in vitro development of normal mammary epithelial cells // Exp. Cell Res. – 1999. – Vol. 247. – P. 399-409.


Рецензия

Для цитирования:


Бакиев Р.Р. ПРЕДПОСЫЛКИ К ПОНИМАНИЮ МЕХАНИЗМОВ РАЗВИТИЯ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ. Креативная хирургия и онкология. 2013;(4):91-95. https://doi.org/10.24060/2076-3093-2013-0-4-91-95

For citation:


Bakiev R.R. PREREQUISITE TO UNDERSTANDING THE MECHANISMS OF DEVELOPMENT OF BREAST CANCER. Creative surgery and oncology. 2013;(4):91-95. (In Russ.) https://doi.org/10.24060/2076-3093-2013-0-4-91-95

Просмотров: 451


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2307-0501 (Print)
ISSN 2076-3093 (Online)