ЭПИГЕНЕТИКА КАНЦЕРОГЕНЕЗА
Аннотация
В настоящее время ключевыми механизмами канцерогенеза признаны эпигенетические события, к которым относятся специфические изменения метилирования ДНК, модификации гистонов, экспрессия микроРНК и высшая хроматиновая организация. Согласно последним данным, некодирующие РНК (микроРНК, малые интерферирующие РНК или siРНК, piРНК, длинные некодирующие РНК или lncРНК) в большинстве своем либо непосредственно образуются из мобильных генетических элементов, либо имеют транспозонное происхождение. Некодирующие РНК специфически влияют на метилирование генома и модификации гистонов в онтогенезе, чему способствуют эволюционно запрограммированные особенности активации транспозонов, из последовательностей которых происходят данные РНК. Таким образом, материальной основой эпигенетической наследственности служат транспозоны. Под действием стресса и при старении увеличивается вероятность развития онкопатологии, что объясняется повышенной вероятностью аномальной активации мобильных генетических элементов, чувствительных к стрессовым воздействиям и изменению уровня гормонов. Аномальная активация транспозонов в клетках ведет к геномной нестабильности – большинство подобных клеток подвергаются апоптозу. Однако в некоторых случаях прогрессирующая геномная нестабильность ведет к повреждению генов онкосупрессоров и активации онкогенов - в результате апоптоза не происходит, а клетки обретают способность неконтролирующей пролиферации с накоплением множества мутаций вследствие прогрессирующей геномной нестабильности, вызванной мобилизацией транспозонов. В каждом типе злокачественных опухолей запускаются свои каскадные механизмы активации мобильных генетических элементов с участием некодирующих РНК. Исследование эпигенетических механизмов развития каждого типа рака даст возможность разработать эффективные методы ранней молекулярно-генетической диагностики онкопатологии, а также таргетной терапии на разных стадиях развития патологического процесса.
Об авторах
Р. Н. МустафинРоссия
Мустафин Рустам Наилевич – кандидат биологических наук, научный сотрудник кафедры генетики и фундаментальной медицины БашГУ.
450076, Уфа, ул. Заки Валиди, 32.
Э. К. Хуснутдинова
Россия
Хуснутдинова Эльза Камилевна – доктор биологических наук, заведующая кафедрой генетики и фундаментальной медицины БашГУ.
450076, Уфа, ул. Заки Валиди, 32;
директор ФГБУН Института биохимии и генетики УНЦ РАН.
450054, г. Уфа, проспект Октября, 71.
Список литературы
1. Майборода АА. Гены и белки онкогенеза. Сибирский медицинский журнал. 2013;(2):132-138. [Mayboroda AA. Genes and proteins of oncogenesis. Sibirskiy meditsinskiy zhurnal = Siberian Medical Journal. 2013;(2):132-138. (in Russ.)].
2. Имянитов ЕН. Общие представления о таргетной терапии. Практическая онкология. 2010;11(3):123-130. [Imyanitov EN. General ideas about targeted therapy. Prakticheskaya onkologiya = Practical oncology. 2010;11(3):123-130. (in Russ.)].
3. Herceg Z, Lambert M, van Veldhoven K, Demetriou C, Vineis P, Smith MT, et al. Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation. Carcinogenesis. 2013;34(9):1955-67. DOI: 10.1093/carcin/bgt212.
4. Samantarrai D, Dash S, Chhetri B, Mallick B. Genomic and epigenomic cross-talks in the regulatory landscape of miRNAs in breast cancer. Mol Cancer Res. 2013;11(4):315-28. DOI: 10.1158/1541-7786. MCR-12-0649.
5. Giordano S, Columbano A. MicroRNA: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology. 2013;57(2):840-847. DOI: 10.1002/hep.26095.
6. Цуканов АС, Шубин ВП, Поспехова НИ, Сачков ИЮ, Кашников ВН, Шелыгин ЮА. Наследственные раки желудочно-кишечного тракта. Практическая онкология. 2014;15(3): 126-133. [Tsukanov AS, Shubin VP, Pospekhova NI, Sachkov IYu, Kashnikov VN, Shelygin YuA. Hereditary cancers of the gastrointestinal tract. Prakticheskaya onkologiya = Practical oncology. 2014;15(3):126-133. (in Russ.)].
7. Заридзе ДГ. Канцерогенез. М.;2004. [Zaridze DG. Carcinogenesis. M.;2004. (in Russ.)].
8. Moyano M, Stefani G. PiRNA involvement in genome stability and human cancer. J Hematol Oncol. 2015;8:38-47. DOI: 10.1186/s13045-015-0133-5.
9. Rodic N, Burns KH. Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms? PLOS Genetics. 2013;9(3):e1003402. DOI: 10.1371/ journal.pgen.1003402.
10. Chen L, Dahlstrom JE, Lee S, Rangasamy D. Naturally occurring endo-siRNA silences LINE1 retrotransposons in human cells through DNA methylation. Epigenetics. 2012;7(7):758-77. DOI: 10.4161/epi.20706.
11. Сидельников ГД, Валихов АФ. О роли эндогенных ретровирусов в биологии опухолевого роста. Вопросы онкологии. 2016;62(6):758-766. [Sidel’nikov GD, Valikhov AF. About the role of endogenous retroviruses in the biology of tumor growth. Voprosy onkologii = Problems in oncology. 2016;62(6):758766. (in Russ.)].
12. Morales-Hernandez A, Gonzalez-Rico FJ, Roman AC, Rico-Leo E, Alvarez-Barrientos A, Sanchez L, et al. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor. Nucleic Acids Res. 2016;44(10):4665-4683. DOI: 10.1093/nar/gkw095.
13. Sturm A, Ivics Z, Vellai T. The mechanism of ageing: primary role of transposable elements in genome disintegration. Cell Mol Life Sci. 2015;72(10):1839-47. DOI: 10.1007/s00018-015-1896-0.
14. Gim J, Ha H, Ahn K, Kim DS, Kim HS. Genomewide identification and classification of microRNAs derived from repetitive elements. Genomic Inform. 2014;12(4):261-267. DOI: 10.5808/GI.2014.12.4.261.
15. Киселев ОИ. Эндогенные ретровирусы: структура и функция в геноме человека. Вопросы вирусологии. 2013;(S1):102-115. [Kiselev OI. Endogenous retroviruses: structure and function in the human genome. Voprosy virusologii = Problems of virology. 2013;(S1):102-115. (in Russ.)].
16. Ohms S, Rangasamy D. Silencing of LINE1 retrotransposons contributes to variation in small noncoding RNA expression in human cancer cells. Oncotarget. 2014;5(12):4103-17. DOI: 10.18632/ oncotarget.1822.
17. Spengler RM, Oakley CK, Davidson BL. Functional microRNAs and target sites are created by lineage-specific transposition. Hum Mol Genet. 2014;23(7):1783-93. DOI: 10.1093/hmg/ddt569.
18. Roberts JT, Cooper EA, Favreau CJ, Howell JS, Lane LG, Mills JE, et al. Continuing analysis of microRNA origins: Formation from transposable element insertions and noncoding RNA mutations. Mob Genet Elements. 2013;1(6):е27755. DOI: 10.4161/mge.27755.
19. Borchert GM, Holton NW, Williams JD, Hernan WL, Bishop IP, Dembosky JA, et al. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob Genet Elements. 2011;1(1):8-17. DOI: 10.4161/mge.1.1.15766.
20. Johnson R, Guigo R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA. 2014;20(7):959-976. DOI: 10.1261/rna.044560.114.
21. Васильева ЛА, Антоненко ОВ, Выхристюк ОВ, Захаров ИК. Селекция изменяет паттерн мобильных генетических элементов в геноме Drosophila Melanogaster. Вестник ВОГиС. 2008;12(3):412-425. [Vasil’eva LA, Antonenko OV, Vykhristyuk OV, Zakharov IK. Selection changes the pattern of mobile genetic elements in genome of Drosophila Melanogaster. Vestnik VOGiS = VOIPS Bulletin. 2008;12(3):412-425. (in Russ.)].
22. Pavlicev M, Hiratsuka K, Swaqqart KA, Dunn C, Muglia L. Detecting endogenous retrovirus-driven tissue-specific gene transcription. Genome Biol Evol. 2015;7(4):1082-97. DOI: 10.1093/gbe/evv049.
23. Kitkumthorn N, Mutirangura A. Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications. Clin Epigenet. 2011;2:315-330. DOI:10.1007/s13148-011-0032-8.
24. Szpakowski S, Sun X, Lage JM, Dyer A, Rubinstein J, Kowalski D, et al. Loss of epigenetic silencing in tumors preferentially affects primatespecific retroelements. Gene. 2009;448(2):151-167. DOI: 10.1016/j.gene.2009.08.006.
25. Wylie A, Jones AE, D’Brot A, Lu WJ, Kurtz P, Moran JV, et al. P53 genes function to restrain mobile elements. Genes Dev. 2016;30(1):64-77. DOI: 10.1101/ gad.266098.115.
26. Li P, Chen S, Xia T, Jiang XM, Shao YF, Xiao BX. et al. Non-coding RNAs and gastric cancer. World J Gastroenterol. 2014;20(18):5411-19. DOI: 10.3748/wjg. v20.i18.5411.
27. Han C, Shen JK, Hornicek FJ, Kan Q, Duan Z. Regulation of microRNA-1 (miR-1) expression in human cancer. Biochim Biophys Acta. 2017;1860(2):227-232. DOI: 10.1016/j.bbagrm.2016.12.004.
28. Patutina OA, Bichenkova EV, Miroshnichenko SK, Mironova NL, Trivoluzzi LT, Burusco KK, et al. MiRNases: Novel peptide-oligonucleotide bioconjugates that silence miR-21 in lymphosarcoma cells. Biomaterials. 2017;122:163-178. DOI: 10.1016/j. biomaterials.2017.01.018.
29. Sakabe T, Azumi J, Umekita Y, Toriguchi K, Hatano E, Hirooka Y, et al. Prognostic relevance of miR137 in patients with hepatocellular carcinoma. Liver Int. 2017;37(2):271-279. DOI: 10.1111/liv.13213.
30. Fukagawa S, Miyata K, Yotsumoto F, Kiyoshima C, Nam SO, Anan H. et al. MiR-135a-3p a promising biomarker and nuckeic acid therapeutic agent for ovarian cancer. Cancer Sci. 2017;108(5):886-896. DOI: 10.1111/cas.13210.
31. Zhou W, Wang S, Ying Y, Zhou R, Mao P. MiR196b/miR-1290 participate in the antitumor effect of resveratrol via regulation of IGFBP3 expression in acute lymphoblastic leukemia. Oncol Rep. 2017;37(2):10751083. DOI: 10.3892/or.2016.5321.
32. Hodzic J, Sie D, Vermeulen A, van Beusechem VW. Functional screening identifies human miRNAs that modulate adenovirus propagation in prostate cancer cells. Hum Gene Ther. 2017 Jan: 23. DOI: 10.1089/hum.2016.143.
Рецензия
Для цитирования:
Мустафин Р.Н., Хуснутдинова Э.К. ЭПИГЕНЕТИКА КАНЦЕРОГЕНЕЗА. Креативная хирургия и онкология. 2017;7(3):60-67. https://doi.org/10.24060/2076-3093-2017-7-3-60-67
For citation:
Mustafin R.N., Khusnutdinova E.K. EPIGENETICS OF CARCINOGENESIS. Creative surgery and oncology. 2017;7(3):60-67. (In Russ.) https://doi.org/10.24060/2076-3093-2017-7-3-60-67