Preview

Creative surgery and oncology

Advanced search

Probable Mechanisms of COVID-19 Pathogenesis

https://doi.org/10.24060/2076-3093-2020-10-4-302-310

Abstract

This review paper focuses on the search for innovative directions in the study of COVID­19 viral infection with the purpose of improving the methods of its treatment and vaccination. Thus far, comprehensive data have been obtained on the ability of nonretroviral RNA viruses, including those replicated in the cytoplasm, to integrate fragments of their genomes into the host DNA. This mechanism provided by the reverse  transcriptase and integrase of endogenous retroelements leads to the persistence of nonretroviral RNA viruses  through the expression of viral proteins by the host genome, which may serve as a prerequisite for the survival of such viruses. DNA integration events play a role in the development of both the immunological response and protective antiviral responses through the RNA interference system. These mechanisms may depend on the phylogenetically ancient fossils of nonretroviral RNA sequences in animal genomes. The discovery of SARS-CoV-2 fragments in COVID­19 recovered patients suggests that the pathogenesis of this disease may be associated with the integration of SARS-CoV-2 genome fragments in the human genome by means of proteins of endogenous retroviral elements. This assumption can be confirmed by the data about the development in older patients of predominantly severe forms of COVID­19 with “hyperactive” immune reactions, which normally weaken with ageing. This may be attributed to age­related abnormal activation of  retrocells, which contribute to reverse transcription and integration of exogenous viruses. This assumption is supported by the presence of coronavirus components in the nuclei of infected cells and the change in the expression of LINE­1 in the lung tissue cells of SARS patients. Due to the probable role of retrocells in the COVID­19 pathogenesis, LINE­1 reverse transcriptase inhibitors and targeted therapy using microRNAs may be offered as promising treatments for COVID­19.

About the Authors

R. N. Mustafin
Bashkir State Medical University
Russian Federation
Cand. Sci. (Biol.), Department of Medical Genetics and Fundamental Medicine

Ufa


E. K. Khusnutdinova
Institute of Biochemistry & Genetics of Ufa Science Centre of the RAS
Russian Federation
Dr. Sci. (Biol.), Professor

Ufa


References

1. Tyrrell D.A., Bynoe M.L. Cultivation of viruses from a high proportion of patients with colds. Lancet. 1966;1:76–7. DOI: 10.1016/s0140-6736(66)92364-6

2. Tyrrell D.A., Almeida J.D., Cunningham C.H., Dowdle W.R., Hofstad M.S., McIntosh K., et al. Coronaviridae. Intervirology. 1975;5(1–2):76–82. DOI: 10.1159/000149883

3. McIntosh K., Kapikian A.Z., Turner H.C., Hartley J.W., Parrott R.H., Chanock R.M. Seroepidemiologic studies of coronavirus infection in adults and children. Am J Epidemiol. 1970;91(6):585–92. DOI: 10.1093/oxfordjournals.aje.a121171

4. Peiris J.S., Lai S.T., Poon L.L., Guan Y., Yam L.Y., Lim W., et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361(9366):1319–25. DOI: 10.1016/s0140-6736(03)13077-2

5. Azhar E.I., Hui D.S.C., Memish Z.A., Drosten C., Zumla A. The Middle East Respiratory Syndome (MERS). Infect Dis Clin North Am. 2019;33(4):891–905. DOI: 10.1016/j.idc.2019.08.001

6. Hui D.S., Azhar E., Madani T.A., Ntoumi F., Kock R., Dar O., et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264–6. DOI: 10.1016/j.ijid.2020.01.009

7. Zhang C., Zheng W., Huang X., Bell E.W., Zhou X., Zhang Y. Protein Structure and Sequence Reanalysis of 2019-nCoV Genome Refutes Snakes as Its Intermediate Host and the Unique Similarity between Its Spike Protein Insertions and HIV-1. J Proteome Res. 2020;19(4):1351–60. DOI: 10.1021/acs.jproteome.0c00129

8. Yi Y., Lagniton P.N.P., Ye S., Li E., Xu R.H. COVID-19: what has been learned about the novel coronavirus disease. Int J Biol Sci. 2020;16(10):1753–66. DOI: 10.7150/ijbs.45134

9. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–92. DOI: 10.1038/s41579-018-0118-9

10. Ceraolo C., Giorgi F.M. Genomic variance of the 2019- nCoV coronavirus. J Med Virol. 2020;92(5):522–8. DOI: 10.1002/jmv.25700

11. Khailany R.A., Safdar M., Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep. 2020;19:100682. DOI: 10.1016/j.genrep.2020.100682

12. de Wilde A.H., Snijder E.J., Kikkert M., van Hemert M.J. Host factors in coronavirus replication. Curr Top Microbiol Immunol. 2018;419:1–42. DOI: 10.1007/82_2017_25

13. Tan Y.W., Hong W., Liu D.X. Binding of the 5’-untranslated region of coronavirus RNA to zinc finger CCHC-type and RNA-binding motif 1 enhances viral replication and transcription. Nucleic Acids Res. 2012;40(11):5065–77. DOI: 10.1093/nar/gks165

14. Lin L., Lu L., Cao W., Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection — a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9(1):727–32. DOI: 10.1080/22221751.2020.1746199

15. Giwa AL, Desai A, Duca A. Novel 2019 coronavirus SARS-CoV-2 (COVID-19): an overview for emergency clinicians. Pediatr Emerg Med Pract. 2020;17(5):1–24. PMID: 32286766

16. Lai C.C., Liu Y.H., Wang C.Y., Wang Y.H., Hsueh S.C., Yen M.Y., et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARSCoV-2): Facts and myths. J Microbiol Immunol Infect. 2020;53(3):404–12. DOI: 10.1016/j.jmii.2020.02.012

17. Li Y., Hu Y., Zhang X., Yu Y., Li B., Wu J., et al. Follow-up testing of viral nucleic acid in discharged patients with moderate type of 2019 coronavirus disease (COVID-19). Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020;49(1):270–4. DOI: 10.3785/j.issn.1008-9292.2020.03.11

18. Li Y., Hu Y., Yu Y., Zhang X., Li B., Wu J., et al. Positive result of SarsCov-2 in faeces and sputum from discharged patient with COVID-19 in Yiwu, China. J Med Virol. 2020;92(10):1938–47. DOI: 10.1002/jmv.25905

19. Hurwitz J.L., Jones B.G., Charpentier E., Woodland D.L. Hypothesis: RNA and DNA viral sequence integration into the mammalian host genome supports long-term B cell and T cell adaptive immunity. Viral Immunol. 2017;30(9):628–32. DOI: 10.1089/vim.2017.0099

20. Olson K.E., Bonizzoni M. Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or something more? Curr. Opin. Insect. Sci. 2017;22:45–53. DOI: 10.1016/j.cois.2017.05.010

21. Ter Horst A.M., Nigg J.C., Dekker F.M., Falk B.W. Endogenous viral elements are widespread in arthropod genomes and commonly give rise to PIWI-interacting RNAs. J Virol. 2019;93(6):e02124–18. DOI: 10.1128/JVI.02124-18

22. Gallei A., Pankraz A., Thiel H.J., Becher P. RNA recombination in vivo in the absence of viral replication. J Virol. 2004;78(12):6271–81. DOI: 10.1128/JVI.78.12.6271-6281.2004

23. Austermann-Busch S., Becher P. RNA structural elements determine frequency and sites of nonhomologous recombination in an animal plus-strand RNA virus. J Virol. 2012;86(13):7393–402. DOI: 10.1128/JVI.00864-12

24. Zhdanov V.M. Integration of viral genomes. Nature. 1975;256(5517):471–3. DOI: 10.1038/256471a0

25. Klenerman P., Hengartner H., Zinkernagel R.M. A non-retroviral RNA virus persists in DNA form. Nature. 1997;390:298–301. DOI: 10.1038/36876

26. Geuking M.B., Weber J., Dewannieux M., Gorelik E., Heidmann T., Hengartner H., et al. Recombination of retrotransposon and exogenous RNA virus results in nonretroviral cDNA integration. Science. 2009;323(5912):393–6. DOI: 10.1126/science.1167375

27. Shimizu A., Nakatani Y., Nakamura T., Jinno-Oue A., Ishikawa O., Boeke J.D., et al. Characterisation of cytoplasmic DNA complementary to non-retroviral RNA viruses in human cells. Sci Rep. 2014;4:5074. DOI: 10.1038/srep05074

28. Crochu S., Cook S., Attoui H., Charrel R.N., De Chesse R., Belhouchet M., et al. Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J Gen Virol. 2004;85(Pt 7):1971–80. DOI: 10.1099/vir.0.79850-0

29. Katzourakis A., Gifford R.J. Endogenous viral elements in animal genomes. PLoS Genet. 2010;6(11):e1001191. DOI: 10.1371/journal.pgen.1001191

30. Horie M., Honda T., Suzuki Y., Kobayashi Y., Daito T., Oshida T., et al. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature. 2010;463(7277):84–7. DOI: 10.1038/nature08695

31. Taylor D.J., Leach R.W., Bruenn J. Filoviruses are ancient and integrated into mammalian genomes. BMC Evol Biol. 2010;10:193. DOI: 10.1186/1471-2148-10-193

32. Belyi V.A., Levine A.J., Skalka A.M. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate. PLoS Pathog. 2010;6(7):e1001030. DOI: 10.1371/journal.ppat.1001030

33. Bergmann C.C., Lane T.E., Stohlman S.A. Coronavirus infection of the central nervous system: host-virus stand-off. Nat Rev Microbiol. 2006;4(2):121–32. DOI: 10.1038/nrmicro1343

34. Xiao C., Li X., Liu S., Sang Y., Gao S.J., Gao F. HIV-1 did not contribute to the 2019-nCoV genome. Emerg Microbes Infect. 2020;9(1):378–81. DOI: 10.1080/22221751.2020.1727299

35. Qinfen Z., Jinming C., Xiaojun H., Huanying Z., Jicheng H., Ling F., et al. The life cycle of SARS coronavirus in Vero E6 cells. J Med Virol. 2004;73(3):332–7. DOI: 10.1002/jmv.20095

36. Timani K.A., Liao Q., Ye L., Zeng Y., Liu J., Zheng Y., et al. Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Res. 2005;114(1–2):23–34. DOI: 10.1016/j.virusres.2005.05.007

37. Yuan X., Yao Z., Shan Y., Chen B., Yang Z., Wu J., et al. Nucleolar localization of non-structural protein 3b, a protein specifically encoded by the severe acute respiratory syndrome coronavirus. Virus Res. 2005;114(1–2):70–9. DOI: 10.1016/j.virusres.2005.06.001

38. Matthews K.L., Coleman C.M., van der Meer Y., Snijder E.J., Frieman M.B. The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signaling. J Gen Virol. 2014;95(Pt 4):874–82. DOI: 10.1099/vir.0.062059-0

39. Sharma K., Åkerström S., Sharma A.K., Chow V.T., Teow S., Abrenica B., et al. SARS-CoV 9b protein diffuses into nucleus, undergoes active Crm1 mediated nucleocytoplasmic export and triggers apoptosis when retained in the nucleus. PLoS One. 2011;6(5):e19436. DOI: 10.1371/journal.pone.0019436

40. Luo H., Chen Q., Chen J., Chen K., Shen X., Jiang H. The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoproteins A1. FEBS Lett. 2005;579:2623–8. DOI: 10.1016/j.febslet.2005.03.080

41. Cardelli M. The epigenetic alterations of endogenous retroelements in aging. Mech Ageing Dev. 2018;174:30–46. DOI: 10.1016/j.mad.2018.02.002

42. He W.P., Shu C.L., Li B.A., Zhao J., Cheng Y. Human LINE1 endonuclease domain as a putative target of SARS- associated autoantibodies involved in the pathogenesis of severe acute respiratory syndrome. Chin Med J (Engl). 2008;121(7):608–14. PMID: 18466680

43. Richardson P., Griffin I., Tucker C., Smith D., Oechsle O., Phelan A., et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395:e30–1. DOI: 10.1016/S0140-6736(20)30304-4

44. Hussain S., Gallagher T. SARS-coronavirus protein 6 conformations required to impede protein import into the nucleus. Virus Res. 2010;153(2):299–304. DOI: 10.1016/j.virusres.2010.08.017

45. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 2020;14(1):69–71. DOI: 10.5582/bst.2020.01020

46. Sciamanna I., Sinibaldi-Vallebona P., Serafino A., Spadafora C. LINE-1 encoded reverse Transcriptase as a target in cancer therapy. Front Biosci (Landmark Ed). 2018;23:1360–9. DOI: 10.2741/4648

47. Chen L., Zhong L. Genomics functional analysis and drug screening of SARS-CoV-2. Genes Dis. 2020;7(4):542–50. DOI: 10.1016/j.gendis.2020.04.002

48. Sardar R., Satish D., Birla S., Gupta D. Comparative analyses of SARCoV2 genomes from different geographical locations and other coronavirus family genomes reveals unique features potentially consequential to host-virus interaction and pathogenesis. Heliyon. 2020;6(9):e04658. DOI: 10.1016/j.heliyon.2020.e04658

49. Thanh Le T., Andreadakis Z., Kumar A., Gomez Roman R., Tollefsen S., Saville M., et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305–6. DOI: 10.1038/d41573-020-00073-5


Review

For citations:


Mustafin R.N., Khusnutdinova E.K. Probable Mechanisms of COVID-19 Pathogenesis. Creative surgery and oncology. 2020;10(4):302-310. (In Russ.) https://doi.org/10.24060/2076-3093-2020-10-4-302-310

Views: 2304


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)