Specific Features of Ovarian Cancer Metastasis
https://doi.org/10.24060/2076-3093-2020-10-4-319-329
Abstract
About the Authors
R. N. MustafinRussian Federation
Cand. Sci. (Biol.), Department of Medical Genetics and Fundamental Medicine
Ufa
L. V. Khalikova
Russian Federation
Department of Histology
Ufa
E. K. Khusnutdinova
Dr. Sci. (Biol.), Professor
Ufa
References
1. Stewart C., Ralyea C., Lockwood S. Ovarian cancer: an integrated review. Semin Oncol Nurs. 2019;35(2):151–6. DOI: 10.1016/j.soncn.2019.02.001
2. Yeung T.L., Leung C.S., Yip K.P., Au Yeung C.L., Wong S.T., Mok S.C. Cellular and molecular processes in ovarian cancer metastasis. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am J Physiol Cell Physiol. 2015;309(7):C444–56. DOI: 10.1152/ajpcell.00188.2015
3. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177(3):1053–64. DOI: 10.2353/ajpath.2010.100105
4. Weidle U.H., Birzele F., Kollmorgen G., Rueger R. Mechanisms and targets involved in dissemination of ovarian cancer. Cancer Genomics Proteomics. 2016;13(6):407–23. DOI: 10.21873/cgp.20004
5. Krishnan V., Clark R., Chekmareva M., Johnson A., George S., Shaw P., et al. In vivo and ex vivo approaches to study ovarian cancer metastatic colonization of milky spot structures in peritoneal adipose. J Vis Exp. 2015;(105):e52721. DOI: 10.3791/52721
6. Sorensen E.W., Gerber S.A., Sedlacek A.L., Rybalko V.Y., Chan W.M., Lord E.M. Omental immune aggregates and tumor metastasis within the peritoneal cavity. Immunol Res. 2009;45(2–3):185–94. DOI: 10.1007/s12026-009-8100-2
7. Gerber S.A., Rybalko V.Y., Bigelow C.E., Lugade A.A., Foster T.H., Frelinger J.G., et al. Preferential attachment of peritoneal tumor metastases to omental immune aggregates and possible role of a unique vascular microenvironment in metastatic survival and growth. Am J Pathol. 2006;169(5):1739–52. DOI: 10.2353/ajpath.2006.051222
8. Meza-Perez S., Randall T.D. Immunological functions of the omentum. Trends Immunol. 2017;38(7):526–36. DOI: 10.1016/j.it.2017.03.002
9. Liu J., Geng X., Li Y. Milky spots: omental functional units and hotbeds for peritoneal cancer metastasis. Tumor Biol. 2016;37:5715–26. DOI: 10.1007/s13277-016-4887-3
10. Clark R., Krishnan V., Schoof M., Rodriguez I., Theriault B., Chekmareva M., et al. Milky spots promote ovarian cancer metastatic colonization of peritoneal adipose in experimental models. Am J Pathol. 2013;183(2):576–91. DOI: 10.1016/j.ajpath.2013.04.023
11. Ben Arie A., McNally L., Kapp D.S., Teng N.N. The omentum and omentectomy in epithelial ovarian cancer: a reappraisal. Part I. Omental function and history of omentectomy. Gynecol Oncol. 2013;131(3):780–3. DOI: 10.1016/j.ygyno.2013.09.014
12. Arie A.B., McNally L., Kapp D.S., Teng N.N. The omentum and omentectomy in epithelial ovarian cancer: a reappraisal. Part II. The role of omentectomy in the staging and treatment of apparent early stage epithelial ovarian cancer. Gynecol Oncol. 2013;131(3):784–90. DOI: 10.1016/j.ygyno.2013.09.013
13. McNally L., Teng N.N., Kapp D.S., Karam A. Does omentectomy in epithelial ovarian cancer affect survival? An analysis of the Surveillance, Epidemiology, and End Results database. Int J Gynecol Cancer. 2015;25(4):607–15. DOI: 10.1097/IGC.0000000000000412
14. Bahar S.G., Rokkam V.R. Omentum Tumors. [Updated 2020 Oct 10]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK563226/
15. Havrlentova L., Faistova H., Mazur M., Ziak D., Polak S. Comparative analysis of human omental milky spots between the patients with colon cancer and the control group. Bratisl Lek Listy. 2017;118(10):580–4. DOI: 10.4149/BLL_2017_111
16. Cipolletta D., Cohen P., Spiegelman B.M., Benoist C., Mathis D. Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARγ effects. Proc Natl Acad Sci USA. 2015;112(2):482–7. DOI: 10.1073/pnas.1423486112
17. Ke X., Shen L. Targeting cytokines secreted by CD4+ CD25high CD127low regulatory T cells inhibits ovarian cancer progression. Scand J Immunol. 2019;89(2):e12736. DOI: 10.1111/sji.12736
18. Krishnan V., Tallapragada S., Schaar B., Kamat K., Chanana A.M., Zhang Y., et al. Omental macrophages secrete chemokine ligands that promote ovarian cancer colonization of the omentum via CCR1. Commun Biol. 2020;3(1):524. DOI: 10.1038/s42003-020-01246-z
19. Etzerodt A., Moulin M., Doktor T.K., Delfini M., Mossadegh-Keller N., Bajenoff M., et al. Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. J Exp Med. 2020;217(4):e20191869. DOI: 10.1084/jem.20191869
20. Lee W., Ko S.Y., Mohamed M.S., Kenny H.A., Lengyel E., Naora H. Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. J Exp Med. 2019;216(1):176–94. DOI: 10.1084/jem.20181170
21. Zhang Q., Zhou W., Yu S., Ju Y., Kit Yan To S., Sze Tsai Wong A., et al. Metabolic reprogramming of ovarian cancer involves ACSL1-mediated metastasis stimulation through upregulated protein myristoylation. Oncogene. 2021;40:97–111. DOI: 10.1038/s41388-020-01516-4
22. Nieman K.M., Kenny H.A., Penicka C.V., Ladanyi A., Buell-Gutbrod R., Zillhardt M.R., et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503. DOI: 10.1038/nm.2492
23. Ladanyi A., Mukherjee A., Kenny H.A., Johnson A., Mitra A.K., Sundaresan S., et al. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene. 2018;37(17):2285–301. DOI: 10.1038/s41388-017-0093-z
24. Hu J., Liu Z., Wang X. Does TP53 mutation promote ovarian cancer metastasis to omentum by regulating lipid metabolism. Med Hypotheses. 2013;81(4):515–20. DOI: 10.1016/j.mehy.2013.06.009
25. Cole A.J., Dwight T., Gill A.J., Dickson K.-A., Zhu Y., Clarkson A., et al. Assessing mutant p53 in primary high-grade serous ovarian cancer using immunohistochamistry and massively parallel sequencing. Sci Rep. 2016;6:26191. DOI: 10.1038/srep26191
26. McKenzie A.J., Hicks S.R., Svec K.V., Naughton H., Edmunds Z.L., Howe A.K. The mechanical microenvironment regulates ovarian cancer cell morphology, migration, and spheroid disaggregation. Sci Rep. 2018;8(1):7228. DOI: 10.1038/s41598-018-25589-0
27. Huang Y.L., Liang C.Y., Ritz D., Coelho R., Septiadi D., Estermann M., et al. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. Elife. 2020;9:e59442. DOI: 10.7554/eLife.59442
28. Nakamura K., Sawada K., Kinose Y., Yoshimura A., Toda A., Nakatsuka E., et al. Exosomes promote ovarian cancer cell invasion through transfer of CD44 to peritoneal mesothelial cells. Mol Cancer Res. 2017;15(1):78–92. DOI: 10.1158/1541-7786.MCR-16-0191
29. Paschos K.A., Canovas D., Bird N.C. The engagement of selectins and their ligands in colorectal cancer liver metastases. J Cell Mol Med. 2010;14(1-2):165–74. DOI: 10.1111/j.1582-4934.2009.00852.x
30. Winiarski B.K., Cope N., Alexander M., Pilling L.C., Warren S., Acheson N., et al. Clinical relevance of increased endothelial and mesothelial expression of proangiogenic proteases and VEGFA in the omentum of patients with metastatic ovarian high-grade serous carcinoma. Transl Oncol. 2014;7(2):267–76.e4. DOI: 10.1016/j.tranon.2014.02.013
31. Wang H., Huang X., Zhang J., Shao N., Chen L.O., Ma D., et al. The expression of VEGF and Dll4/Notch pathway molecules in ovarian cancer. Clin Chim Acta. 2014;436:243– 8. DOI: 10.1016/j.cca.2014.06.005
32. Sopo M., Anttila M., Hämäläinen K., Kivelä A., Ylä- Herttuala S., Kosma V.M., et al. Expression profiles of VEGF-A, VEGF-D and VEGFR1 are higher in distant metastases than in matched primary high grade epithelial ovarian cancer. BMC Cancer. 2019;19(1):584. DOI: 10.1186/s12885-019-5757-3
33. Roggiani F., Mezzanzanica D., Rea K., Tomassetti A. Guidance of signaling activations by cadherins and integrins in epithelial ovarian cancer cells. Int J Mol Sci. 2016;17(9):1387. DOI: 10.3390/ijms17091387
34. Mui K.L., Chen C.S., Assoian R.K. The mechanical regulation of integrin-cadherin crosstalk organizes cells, signaling and forces. J Cell Sci. 2016;129(6):1093–100. DOI: 10.1242/jcs.183699
35. Makrilia N., Kollias A., Manolopoulos L., Syrigos K. Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest. 2009;27(10):1023–37. DOI: 10.3109/07357900902769749
36. Yi Y., Cheng J.C., Klausen C., Leung P.C.K. Activin A promotes ovarian cancer cell migration by suppressing E-cadherin expression. Exp Cell Res. 2019;382(2):111471. DOI: 10.1016/j.yexcr.2019.06.016
37. Janiszewska M., Primi M.C., Izard T. Cell adhesion in cancer: Beyond the migration of single cells. J Biol Chem. 2020;295(8):2495–05. DOI: 10.1074/jbc.REV119.007759
38. Wong C.W., Dye D.E., Coombe D.R. The role of immunoglobulin superfamily cell adhesion molecules in cancer metastasis. Int J Cell Biol. 2012; 2012:340296. DOI: 10.1155/2012/340296
39. Borsig L. Selectins in cancer immunity. Glycobiology. 2018;28(9):648–55. DOI: 10.1093/glycob/cwx105
40. Khaustova N.A., Maltseva D.V., Oliveira-Ferrer L., Stürken C., MildeLangosch K., Makarova J.A., et al. Selectin-independent adhesion during ovarian cancer metastasis. Biochimie. 2017;142:197–206. DOI: 10.1016/j.biochi.2017.09.009
41. Carroll M.J., Fogg K.C., Patel H.A., Krause H.B., Mancha A.S., Patankar M.S., et al. Alternatively-activated macrophages upregulate mesothelial expression of P-selectin to enhance adhesion of ovarian cancer cells. Cancer Res. 2018;78(13):3560–73. DOI: 10.1158/0008-5472.CAN-17-3341
42. Rangel-Moreno J., Moyron-Quiroz J.E., Carragher D.M., Kusser K., Hartson L., Moquin A., et al. Omental milky spots develop in the absence of lymphoid tissue-inducer cells and support B and T cell responses to peritoneal antigens. Immunity. 2009;30(5):731–43. DOI: 10.1016/j.immuni.2009.03.014
43. Martinez F.O., Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13. DOI: 10.12703/P6-13
44. Zhang L., Conejo-Garcia J.R., Katsaros D., Gimotty P.A., Massobrio M., Regnani G., et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13. DOI: 10.1056/NEJMoa020177
45. Sato E., Olson S.H., Ahn J., Bundy B., Nishikawa H., Qian F., et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA. 2005;102(51):18538–43. DOI: 10.1073/pnas.0509182102
46. Wouters M.C., Komdeur F.L., Workel H.H., Klip H.G., Plat A., Kooi N.M., et al. Treatment regimen, surgical outcome, and T-cell differentiation influence prognostic benefit of tumor-infiltrating lymphocytes in high-grade serous ovarian cancer. Clin Cancer Res. 2016;22(3):714–24. DOI: 10.1158/1078-0432.CCR-15-1617
47. Pinto M.P., Balmaceda C., Bravo M.L., Kato S., Villarroel A., Owen G.I., et al. Patient inflammatory status and CD4+/CD8+ intraepithelial tumor lymphocyte infiltration are predictors of outcomes in highgrade serous ovarian cancer. Gynecol Oncol. 2018;151(1):10–7. DOI: 10.1016/j.ygyno.2018.07.025
48. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15. DOI: 10.1038/nature10166
49. Horikawa N., Abiko K., Matsumura N., Hamanishi J., Baba T., Yamaguchi K., et al. Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer Res. 2017;23(2):587–99. DOI: 10.1158/1078-0432.CCR-16-0387
50. Van der Meer J.M.R., Maas R.J.A., Guldevall K., Klarenaar K., de Jonge P.K.J.D., Evert J.S.H., et al. IL-15 superagonist N-803 improves IFNγ production and killing of leukemia and ovarian cancer cells by CD34+ progenitor-derived NK cells. Cancer Immunol Immunother. 2020 Nov 3. DOI: 10.1007/s00262-020-02749-8
51. Hoogstad-van Evert J.S., Cany J., van den Brand D., Oudenampsen M., Brock R., Torensma R., et al. Umbilical cord blood CD34+ progenitorderived NK cells efficiently kill ovarian cancer spheroids and intraperitoneal tumors in NOD/SCID/IL2Rgnull mice. Oncoimmunology. 2017;6(8):e1320630. DOI: 10.1080/2162402X.2017.1320630
52. Pearce O.M.T., Delaine-Smith R.M., Maniati E., Nichols S., Wang J., Böhm S., et al. Deconstruction of a metastatic tumor microenvironment reveals a common matrix response in human cancers. Cancer Discov. 2018;8(3):304–19. DOI: 10.1158/2159-8290.CD-17-0284
53. He L., Wang Q., Zhao X. Microvessel density as a prognostic factor in ovarian cancer: a systematic review and meta-analysis. Asian Pac J Cancer Prev. 2015;16(3):869–74. DOI: 10.7314/apjcp.2015.16.3.869
54. Qiu H., Cao L., Wang D., Xu H., Liang Z. High levels of circulating CD34+/VEGFR3+ lymphatic/vascular endothelial progenitor cells is correlated with lymph node metastasis in patients with epithelial ovarian cancer. J Obstet Gynaecol Res. 2013;39(7):1268–75. DOI: 10.1111/jog.12047
55. Rea K., Roggiani F., De Cecco L., Raspagliesi F., Carcangiu M.L., NairMenon J., et al. Simultaneous E-cadherin and PLEKHA7 expression negatively affects E-cadherin/EGFR mediated ovarian cancer cell growth. J Exp Clin Cancer Res. 2018;37(1):146. DOI: 10.1186/s13046-018-0796-1
56. Köbel M., Kang E.Y. The many uses of p53 immunohistochemistry in gynecological pathology: proceedings of the ISGyP companion society session at the 2020 USCAP Annual9 Meeting. Int J Gynecol Pathol. 2021;40(1):32–40. DOI: 10.1097/PGP.0000000000000725
57. Mayoral M., Paredes P., Saco A., Fusté P., Perlaza P., Tapias A., et al. Correlation of 18F-FDG uptake on PET/CT with Ki67 immunohistochemistry in pre-treatment epithelial ovarian cancer. Rev Esp Med Nucl Imagen Mol. 2018;37(2):80–6. DOI: 10.1016/j.remn.2017.07.005
58. Li L.T., Jiang G., Chen Q., Zheng J.N. Ki67 is a promising molecular target in the diagnosis of cancer (review). Mol Med Rep. 2015;11(3):1566–72. DOI: 10.3892/mmr.2014.2914
59. Ikehara Y., Shiuchi N., Kabata-Ikehara S., Nakanishi H., Yokoyama N., Takagi H., et al. Effective induction of anti-tumor immune responses with oligomannose-coated liposome targeting to intraperitoneal phagocytic cells. Cancer Lett. 2008;260(1–2):137–45. DOI: 10.1016/j.canlet.2007.10.038
60. Wall J.A., Meza-Perez S., Scalise C.B., Katre A., Londoño A.I., Turbitt W.J., et al. Manipulating the Wnt/β- catenin signaling pathway to promote anti-tumor immune infiltration into the TME to sensitize ovarian cancer to ICB therapy. Gynecol Oncol. 2021;160(1):285–94. DOI: 10.1016/j.ygyno.2020.10.031
Review
For citations:
Mustafin R.N., Khalikova L.V., Khusnutdinova E.K. Specific Features of Ovarian Cancer Metastasis. Creative surgery and oncology. 2020;10(4):319-329. (In Russ.) https://doi.org/10.24060/2076-3093-2020-10-4-319-329