Stromal Vascular Fraction: Biology and Application Outlook
https://doi.org/10.24060/2076-3093-2021-11-1-92-99
Abstract
Stromal vascular fraction (SVF) is a heterogeneous cell extract obtained with enzymatic dissociation of adipose tissue followed by centrifugation. This population includes many different cell types, i.a. adipose tissue stem cells (ATSCs), vascular endothelial and smooth muscle cells and their precursors, pericytes, fibroblasts, macrophages, T-lymphocytes, etc., excluding mature adipocytes. The main SVF component is ATSCs capable of self-renewal and multipotent differentiation. Since early research on SVF, an extensive effort has been aimed at understanding its clinical applications promoting a significant progress in the SVF use for treatment of various diseases and injuries. The past decade has witnessed an upward publication trend in basic and clinical research into the SVF therapeutic value. Manifold methods and devices for the SVF isolation from human liposuction lipoaspirate have been developed, continuously contributing to preclinical and clinical trials of its safety and efficacy. This review discusses the main properties and functions of the SVF cell population, its efficacy and safety for human therapy.
About the Authors
V. N. PavlovRussian Federation
Valentin N. Pavlov — Dr. Sci. (Med.), Prof., RAS Corresponding Member, Department of Urology with a course of Advanced Professional Education
Ufa
A. A. Kazikhinurov
Russian Federation
Albert A. Kazikhinurov — Dr. Sci. (Med.), Prof., Department of Urology with a course of Advanced Professional Education
Ufa
R. A. Kazikhinurov
Russian Federation
Rustem A. Kazikhinurov — Cand. Sci. (Med.), Assoc. Prof., Department of Urology with a course of Advanced Professional Education
Ufa
M. A. Agaverdiev
Russian Federation
Murad A. Agaverdiev — Department of Urology with a course of Advanced Professional Education
Ufa
I. F. Gareev
Russian Federation
Ilgiz F. Gareev — Cand. Sci. (Med.), Central Research Laboratory
Ufa
O. A. Beylerli
Russian Federation
Ozal A. Beylerli — Central Research Laboratory
Ufa
B. Z. Mazorov
Russian Federation
Bakhodur Z. Mazorov — Department of Urology with a Course of Advanced Professional Education
Ufa
References
1. Andia I., Maffulli N., Burgos-Alonso N.Stromal vascular fraction technologies and clinical applications. Expert Opin Biol Ther. 2019;19(12):1289–305. DOI: 10.1080/14712598.2019.1671970
2. Ramakrishnan V.M., Boyd N.L.The adipose stromal vascular fraction as a complex cellular source for tissue engineering applications. Tissue Eng Part B Rev. 2018;24(4):289–99. DOI: 10.1089/ten.TEB.2017.0061
3. Yao Y., Dong Z., Liao Y., Zhang P., Ma J., Gao J., et al. Adipose extracellular matrix/stromal vascular fraction gel: a novel adipose tissue-derived injectable for stem cell therapy. Plast Reconstr Surg. 2017;139(4):867–79. DOI: 10.1097/PRS.0000000000003214
4. Rasmussen B.S., Sørensen C.L., Kurbegovic S., Ørholt M., Talman M.M., Herly M., et al. Cell-enriched fat grafting improves graft retention in a porcine model: a dose-response study of adipose-derived stem cells versus stromal vascular fraction. Plast Reconstr Surg. 2019;144(3):397e–408e. DOI: 10.1097/PRS.0000000000005920
5. Nürnberger S., Lindner C., Maier J., Strohmeier K., Wurzer C., Slezak P., et al. Adipose-tissue-derived therapeutic cells in their natural environment as an autologous cell therapy strategy: the microtissuestromal vascular fraction. Eur Cell Mater. 2019;37:113–33. DOI: 10.22203/eCM.v037a08
6. Fritsche E., Volk H.D., Reinke P., Abou-El-Enein M. Toward an optimized process for clinical manufacturing of CAR-Tregcell therapy. Trends Biotechnol. 2020;38(10):1099–112. DOI: 10.1016/j.tibtech.2019.12.009
7. Aghayan H.R., Payab M., Mohamadi-Jahani F., Aghayan S.S., Larijani B., Arjmand B. GMP-compliant production of human placentaderived mesenchymal stem cells. Methods Mol Biol. 2021;2286:213–25. DOI: 10.1007/7651_2020_282
8. Semon J.A., Zhang X., Pandey A.C., Alandete S.M., Maness C., Zhang S., et al. Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis. Stem Cells Transl Med. 2013;2(10):789–96. DOI: 10.5966/sctm.2013-0032
9. Jurgens W.J., Kroeze R.J., Zandieh-Doulabi B., van Dijk A., Renders G.A., Smit T.H., et al. One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study. Biores Open Access. 2013;2(4):315–25. DOI: 10.1089/biores.2013.0024
10. Wu L., Prins H.J., Leijten J., Helder M.N., Evseenko D., Moroni L., et al. Chondrocytes cocultured with stromal vascular fraction of adipose tissue present more intense chondrogenic characteristics than with adipose stem cells. Tissue Eng Part A. 2016;22(3–4):336–48. DOI: 10.1089/ten.TEA.2015.0269
11. Brown J.C., Shang H., Li Y., Yang N., Patel N., Katz A.J. Isolation of adipose-derived stromal vascular fraction cells using a novel point-of-care device: cell characterization and review of the literature. Tissue Eng Part C Methods. 2017;23(3):125–35. DOI: 10.1089/ten.TEC.2016.0377
12. van Dongen J.A., Harmsen M.C., Stevens H.P. Isolation of stromal vascular fraction by fractionation of adipose tissue. Methods Mol Biol. 2019;1993:91–103. DOI: 10.1007/978-1-4939-9473-1_8
13. Gentile P., Calabrese C., De Angelis B., Pizzicannella J., Kothari A., Garcovich S. Impact of the different preparation methods to obtain human adipose-derived stromal vascular fraction cells (AD-SVFs) and human adipose-derived mesenchymal stem cells (AD-MSCs): enzymatic digestion versus mechanical centrifugation. Int J Mol Sci. 2019;20(21):5471. DOI: 10.3390/ijms20215471
14. Lee S.J., Lee C.R., Kim K.J., Ryu Y.H., Kim E., Han Y.N., et al. Optimal condition of isolation from an adipose tissue-derived stromal vascular fraction for the development of automated systems. Tissue Eng Regen Med. 2020;17(2):203–8. DOI: 10.1007/s13770-019-00238-3
15. Aronowitz J.A., Lockhart R.A., Hakakian C.S. A method for isolation of stromal vascular fraction cells in a clinically relevant time frame.Methods Mol Biol. 2018;1773:11–9. DOI: 10.1007/978-1-4939-7799-4_2
16. Haack-Sørensen M., Follin B., Juhl M., Brorsen S.K., Søndergaard R.H., Kastrup J., et al. Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture. J Transl Med. 2016;14(1):319. DOI: 10.1186/s12967-016-1080-9
17. Ghiasloo M., Lobato R.C., Díaz J.M., Singh K., Verpaele A., Tonnard P. Expanding clinical indications of mechanically isolated stromal vascular fraction: a systematic review. Aesthet Surg J. 2020;40(9):NP546–60. DOI: 10.1093/asj/sjaa111
18. Karina K., Rosliana I., Rosadi I., Schwartz R., Sobariah S., Afini I., et al. Safety of technique and procedure of stromal vascular fraction therapy: from liposuction to cell administration. Scientifica (Cairo). 2020;2020:2863624. DOI: 10.1155/2020/2863624
19. Basso S., Compagno F., Zelini P., Giorgiani G., Boghen S., Bergami E., et al. Harnessing T Cells to control infections after allogeneic hematopoietic stem cell transplantation. Front Immunol. 2020;11:567531. DOI: 10.3389/fimmu.2020.567531
20. Wada A., Nishio N., Yokoi S., Tsuzuki H., Mukoyama N., Maruo T., et al. Safety and feasibility of fat injection therapy with adiposederived stem cells in a rabbit hypoglossal nerve paralysis model: A pilot study. Auris Nasus Larynx. 2021;48(2):274–80. DOI: 10.1016/j.anl.2020.08.003
21. Yoshitani J., Kabata T., Arakawa H., Kato Y., Nojima T., Hayashi K., et al. Combinational therapy with antibiotics and antibiotic-loaded adipose-derived stem cells reduce abscess formation in implant-related infection in rats. Sci Rep. 2020;10(1):11182. DOI: 10.1038/s41598-020-68184-y
22. Schneier M., Razdan S., Miller A.M., Briceno M.E., Barua S. Current technologies to endotoxin detection and removal for biopharmaceutical purification.Biotechnol Bioeng. 2020;117(8):2588–609. DOI: 10.1002/bit.27362
23. Monteiro H.F., Faciola A.P. Ruminal acidosis, bacterial changes, and lipopolysaccharides. J Anim Sci. 2020;98(8):skaa248. DOI: 10.1093/jas/skaa248
24. Liebers V., Brüning T., Raulf M. Occupational endotoxin exposure and health effects. Arch Toxicol. 2020;94(11):3629–44. DOI: 10.1007/s00204-020-02905-0
25. Bacterial Endotoxins Test. Chapter 85, United States Pharmacopeia. [cited 2016 Nov 4]. Available from: http://www.usp.org/sites/default/files/usp_pdf/EN/USPNF/2011-02-2585BACTERIALENDOTOXINS.pdf
26. Neun B.W., Dobrovolskaia M.A. Detection of endotoxin in nanoformulations using Limulus Amoebocyte Lysate (LAL) assays. J Vis Exp. 2019;(143). DOI: 10.3791/58830
27. Chan L.L., McCulley K.J., Kessel S.L. Assessment of cell viability with single-, dual-, and multi-staining methods using image cytometry.Methods Mol Biol. 2017;1601:27–41. DOI: 10.1007/978-1-4939-6960-9_3
28. Mushahary D., Spittler A., Kasper C., Weber V., Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A. 2018;93(1):19–31. DOI: 10.1002/cyto.a.23242
29. Borrelli M.R., Patel R.A., Blackshear C., Vistnes S., Diaz Deleon N.M., Adem S., et al. CD34+CD146+ adipose-derived stromal cells enhance engraftment of transplanted fat.Stem Cells Transl Med. 2020;9(11):1389–400. DOI: 10.1002/sctm.19-0195
30. Oshita T., Tobita M., Tajima S., Mizuno H. Adipose-derived stem cells improve collagenase-induced tendinopathy in a rat model. Am J Sports Med. 2016;44(8):1983–9. DOI: 10.1177/0363546516640750
31. Giromini C., Fekete Á.A., Givens D.I., Baldi A., Lovegrove J.A. Shortcommunication: a comparison of the in vitro angiotensin-1-converting enzyme inhibitory capacity of dairy and plant protein supplements. Nutrients. 2017;9(12):1352. DOI: 10.3390/nu9121352
32. Hicok K.C., Hedrick M.H. Automated isolation and processing of adipose-derived stem and regenerative cells. Methods Mol Biol. 2011;702:87–105. DOI: 10.1007/978-1-61737-960-4_8
33. Cowper M., Frazier T., Wu X., Curley L., Ma M.H., Mohiuddin O.A., et al. Human platelet lysate as a functional substitute for fetal bovine serum in the culture of human adipose derived stromal/stem cells.Cells. 2019;8(7):724. DOI: 10.3390/cells8070724
34. Khan M.A., Zubair H., Anand S., Srivastava S.K., Singh S., Singh A.P. Dysregulation of metabolic enzymes in tumor and stromal cells: Role in oncogenesis and therapeutic opportunities. Cancer Lett. 2020;473:176–85. DOI: 10.1016/j.canlet.2020.01.003
35. Si Z., Wang X., Sun C., Kang Y., Xu J., Wang X., et al. Adiposederived stem cells: sources, potency, and implications for regenerative therapies.Biomed Pharmacother. 2019;114:108765. DOI: 10.1016/j.biopha.2019.108765
36. Gimble J.M., Guilak F., Bunnell B.A. Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Res Ther. 2010;1(2):19. DOI: 10.1186/scrt19
37. Zakaria N., Yahaya B.H. Adipose-derived mesenchymal stem cells promote growth and migration of lung adenocarcinoma cancer cells. Adv Exp Med Biol. 2020;1292:83–95. DOI: 10.1007/5584_2019_464
38. Chan Y.W., So C., Yau K.L., Chiu K.C., Wang X., Chan F.L., et al. Adipose-derived stem cells and cancer cells fuse to generate cancer stem cell-like cells with increased tumorigenicity. J Cell Physiol. 2020;235(10):6794–807. DOI: 10.1002/jcp.29574
39. Shammas R.L., Fales A.M., Crawford B.M., Wisdom A.J., Devi G.R., Brown D.A., et al. Human adipose-derived stem cells labeled with plasmonic gold nanostars for cellular tracking and photothermal cancer cell ablation. Plast Reconstr Surg. 2017;139(4):900e–10e. DOI: 10.1097/PRS.0000000000003187
40. Wang X. Stem cells in tissues, organoids, and cancers. Cell Mol Life Sci. 2019;76(20):4043–70. DOI: 10.1007/s00018-019-03199-x
41. Wu Q., Li B., Li Z., Li J., Sun S., Sun S. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol. 2019;12(1):95. DOI: 10.1186/s13045-019-0778-6
42. Rybinska I., Agresti R., Trapani A., Tagliabue E., Triulzi T. Adipocytes in breast cancer, the thick and the thin. Cells. 2020;9(3):560. DOI: 10.3390/cells9030560
43. Lee J.S., Eo P., Kim M.C., Kim J.B., Jin H.K., Bae J.S., et al. Effects of stromal vascular fraction on breast cancer growth and fat engraftment in NOD/SCID mice. Aesthetic Plast Surg. 2019;43(2):498–513. DOI: 10.1007/s00266-018-01304-2
44. Mazur S., Zołocińska A., Siennicka K., Janik-Kosacka K., Chrapusta A., Pojda Z. Safety of adipose-derived cell (stromal vascular fraction — SVF) augmentation for surgical breast reconstruction in cancer patients. Adv Clin Exp Med. 2018;27(8):1085–90. DOI: 10.17219/acem/70798
45. Zhao R., Kaakati R., Liu X., Xu L., Lee A.K., Bachelder R., et al. CRISPR/Cas9-mediated BRCA1 knockdown adipose stem cells promote breast cancer progression.Plast Reconstr Surg. 2019;143(3):747–56. DOI: 10.1097/PRS.0000000000005316
46. Goto H., Shimono Y., Funakoshi Y., Imamura Y., Toyoda M., Kiyota N., et al. Adipose-derived stem cells enhance human breast cancer growth and cancer stem cell-like properties through adipsin.Oncogene. 2019;38(6):767–79. DOI: 10.1038/s41388-018-0477-8
Review
For citations:
Pavlov V.N., Kazikhinurov A.A., Kazikhinurov R.A., Agaverdiev M.A., Gareev I.F., Beylerli O.A., Mazorov B.Z. Stromal Vascular Fraction: Biology and Application Outlook. Creative surgery and oncology. 2021;11(1):92-99. (In Russ.) https://doi.org/10.24060/2076-3093-2021-11-1-92-99