Circular RNA Expression Profile in Cervical Cancer and Construction of the Circular RNA‑MicroRNA‑Messenger RNA Regulatory Network
https://doi.org/10.24060/2076-3093-2024-14-2-116-126
Abstract
Introduction. Cervical cancer (CC) remains the most common cancer in women worldwide. However, effective and specific biomarkers for the diagnosis and prognosis of cervical cancer are yet to be found. In recent years, the potential of circular RNAs (circRNAs) as new diagnostic, prognostic and therapeutic tools has received much attention. The current study involved an in-depth bioinformatics research to explore the circRNA-microRNA (miRNA)-messenger RNA (mRNA) regulatory network in order to identify important molecular processes and biological pathways supposedly associated with CC. Materials and methods. The study collected data on the expression of circRNA (GSE102686), miRNA (GSE30656) and mRNA of target genes (GSE9750), based on the Gene Expression Omnibus (GEO) database, in squamous cell carcinoma of the cervix samples and normal squamous epithelium of the cervix, dividing them into study and control groups. Protein-protein interaction (PPI), Gene Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to further understand the function of circRNAs for their target genes. Results. A total of 105 differentially expressed circular RNAs (DECs), 144 differentially expressed microRNAs (DEMs), and 539 differentially expressed target genes (DEGs) were identified for cervical cancer. Concurrently, functional enrichment analysis of GO and KEGG pathways was performed for DEGs. Subsequently, searching databases for circRNA, miRNA and mRNA target genes, as well as PPI network analysis and functional enrichment revealed 3 DECs with significantly high expression levels (hsa_circ_0000745, hsa_circ_0084927 and hsa_circ_0002762), 6 DEMs with reduced expression levels (hsa -miR-145, hsa-miR-876-3p, hsa-miR-1229, hsa-miR-182, hsa-miR-520h and hsa-miR-1252) and 9 key genes such as ANGPT2, COL11A1, MEST, KIF20A, CLN6, FNDC3B, USP18, DLGAP5 and CXCL9, suggesting a potentially significant role in cervical cancer. Conclusion.Understanding the circRNA-miRNA-mRNA regulatory network is of great importance for evaluating the oncogenesis of CC, as well as discoverying new circRNAs as the main regulatory molecules in this network. This is considered to be a new direction in the diagnosis and targeted therapy of cervical cancer.
About the Authors
S. A. BegliarzadeRussian Federation
Sema A. Begliarzade — Postgraduate Student, Department of Oncology, Radiology and Radiotherapy
Tyumen
R. I. Tamrazov
Russian Federation
Rasim I. Tamrazov — Dr. Sci. (Med.), Prof., Department of Oncology, Radiotherapy with a course of Oncourology
Moscow
E. R. Musaev
Russian Federation
Elmar R. Musaev — Dr. Sci. (Med.), Prof., Corresponding Member of the Russian Academy of Sciences, Department of Oncology
Moscow
C. Wang
China
Chunlei Wang — Prof., Department of Neurosurgery
Harbin
References
1. Podwika S.E., Duska L.R. Top advances of the year: Cervical cancer. Cancer. 2023;129(5):657–63. DOI: 10.1002/cncr.34617
2. Robinson E.F., Darby J.P., Moulder J.K. Cervical cancer screening: missed opportunities in a one-track model. Int J Gynecol Cancer. 2023;33(4):646. DOI: 10.1136/ijgc-2023-004311
3. Sokale I.O., Thrift A.P., Montealegre J., Adekanmbi V., Chido-Amajuoyi O.G., Amuta A., et al. Geographic variation in late-stage cervical cancer diagnosis. JAMA Netw Open. 2023;6(11):e2343152. DOI: 10.1001/jamanetworkopen.2023.43152
4. Martínez-Rodríguez F., Limones-González J.E., Mendoza-Almanza B., Esparza-Ibarra E.L., Gallegos-Flores P.I., Ayala-Luján J.L., et al. Understanding cervical cancer through proteomics. Cells. 2021;10(8):1854. DOI: 10.3390/cells10081854
5. Elias M.H., Das S., Abdul Hamid N. Candidate genes and pathways in cervical cancer: a systematic review and integrated bioinformatic analysis. Cancers (Basel). 2023;15(3):853. DOI: 10.3390/cancers15030853
6. Wu B., Xi S. Bioinformatics analysis of differentially expressed genes and pathways in the development of cervical cancer. BMC Cancer. 2021;21(1):733. DOI: 10.1186/s12885-021-08412-4
7. Han Y.H., Ma D.Y., Lee S.J., Mao Y.Y., Sun S.Y., Jin M.H., et al. Bioinformatics analysis of novel targets for treating cervical cancer by immunotherapy based on immune escape. Cancer Genomics Proteomics. 2023;20(4):383–97. DOI: 10.21873/cgp.20390
8. Zhu G., Xiong Z., Chen W., Zhu Z., Wang W. Identification of key biomarkers and related immune cell infiltration in cervical cancer tissue based on bioinformatics analysis. Sci Rep. 2023;13(1):10121. DOI: 10.1038/s41598-023-37346-z
9. Beilerli A., Gareev I., Beylerli O., Yang G., Pavlov V., Aliev G., et al. Circular RNAs as biomarkers and therapeutic targets in cancer. Semin Cancer Biol. 2022;83:242–52. DOI: 10.1016/j.semcancer.2020.12.026
10. Sufianov A., Begliarzade S., Beilerli A., Liang Y., Ilyasova T., Beylerli O. Circular RNAs as biomarkers for lung cancer. Noncoding RNA Res. 2022;8(1):83–8. DOI: 10.1016/j.ncrna.2022.11.002
11. Beilerli A., Begliarzade S., Sufianov A., Ilyasova T., Liang Y., Beylerli O. Circulating ciRS-7 as a potential non-invasive biomarker for epithelial ovarian cancer: An investigative study. Noncoding RNA Res. 2022;7(3):197–204. DOI: 10.1016/j.ncrna.2022.07.004
12. Begliarzade S, Sufianov A, Ilyasova T, Shumadalova A, Sufianov R, Beylerli O, Yan Z. Circular RNA in cervical cancer: Fundamental mechanism and clinical potential. Noncoding RNA Res. 2023 Nov 18;9(1):116-124. DOI: 10.1016/j.ncrna.2023.11.009.
13. Zhang P., Chen M. Circular RNA Databases. Methods Mol Biol. 2021;2362:109–18. DOI: 10.1007/978-1-0716-1645-1_7
14. Panda A.C., Dudekula D.B., Abdelmohsen K., Gorospe M. Analysis of circular RNAs using the web tool circinteractome. Methods Mol Biol. 2018;1724:43–56. DOI: 10.1007/978-1-4939-7562-4_4
15. Luna Buitrago D., Lovering R.C., Caporali A. Insights into online microRNA bioinformatics tools. Noncoding RNA. 2023;9(2):18. DOI: 10.3390/ncrna9020018
16. Soares L.C., de Souza R.J., Oliveira M.A.P. Reviewing FIGO 2018 cervical cancer staging. Acta Obstet Gynecol Scand. 2023;102(12):1757–8. DOI: 10.1111/aogs.14667
17. Li K., Du Y., Li L., Wei D.Q. Bioinformatics approaches for anti-cancer drug discovery. Curr Drug Targets. 2020;21(1):3–17. DOI: 10.2174/138 9450120666190923162203
18. Huang M., He Y.R., Liang L.C., Huang Q., Zhu Z.Q. Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer. World J Gastroenterol. 2017;23(34):6330–8. DOI: 10.3748/wjg.v23.i34.6330
19. Zhang C., Wang J., Wang H., Li J. Interference of the circular RNA sperm antigen with calponin homology and coiled-coil domains 1 suppresses growth and promotes apoptosis of breast cancer cells partially through targeting miR-1236-3p/Chromobox 8 pathway. Clin Breast Cancer. 2024;24(3):e138–51.e2. DOI: 10.1016/j.clbc.2023.11.009
20. Jiao J., Zhang T., Jiao X., Huang T., Zhao L., Ma D., et al. hsa_ circ_0000745 promotes cervical cancer by increasing cell proliferation, migration, and invasion. J Cell Physiol. 2020;235(2):1287–95. DOI: 10.1002/jcp.29045
21. Chen Y., Ling C., Xu Y., Liu J., Tang W. Evaluation of diagnostic and prognostic value of hsa_circ_0084927 and analysis of associated ceRNA network in colorectal cancer. Int J Gen Med. 2022;15:4357–77. DOI: 10.2147/IJGM.S355043
22. Shi P., Zhang X., Lou C., Xue Y., Guo R., Chen S. Hsa_ circ_0084927 regulates cervical cancer advancement via regulation of the miR-634/TPD52 Axis. Cancer Manag Res. 2020;12:9435–48. DOI: 10.2147/CMAR.S272478
23. Qiu F., Ou D., Tan H., Gao Y., Zi D. The circCDK17/miR-122-5p/ASF1B axis regulates the progression of cervical cancer. Histol Histopathol. 2023;38(3):359–71. DOI: 10.14670/HH-18-527
24. Bai H., Song M., Jiao R., Li W., Zhao J., Xiao M., et al. DUSP7 inhibits cervical cancer progression by inactivating the RAS pathway. J Cell Mol Med. 2021;25(19):9306–18. DOI: 10.1111/jcmm.16865
25. Bhattacharjee R., Das S.S., Biswal S.S., Nath A., Das D., Basu A., et al. Mechanistic role of HPV-associated early proteins in cervical cancer: Molecular pathways and targeted therapeutic strategies. Crit Rev Oncol Hematol. 2022;174:103675. DOI: 10.1016/j.critrevonc.2022.103675
26. Yang D., Fan L., Song Z., Fang S., Huang M., Chen P. The KMT1A/ TIMP3/PI3K/AKT circuit regulates tumor growth in cervical cancer. Reprod Biol. 2022;22(3):100644. DOI: 10.1016/j.repbio.2022.100644
27. Lee J.W., Lee J., Moon E.Y. HeLa human cervical cancer cell migration is inhibited by treatment with dibutyryl-cAMP. Anticancer Res. 2014;34(7):3447–55.
28. Mokoala K.M.G., Lawal I.O., Maserumule L.C., Bida M., Maes A., Ndlovu H., et al. Correlation between [68Ga]Ga-FAPI-46 PET Imaging and HIF-1α Immunohistochemical Analysis in Cervical Cancer: Proof-of-Concept. Cancers (Basel). 2023;15(15):3953. DOI: 10.3390/cancers15153953
29. Fan Y., Wang Y., Liu F., Wang H., Li Q. SEC61G promotes cervical cancer proliferation by activating MAPK signaling pathway. Dis Markers. 2022;2022:7016079. DOI: 10.1155/2022/7016079 30 Chandrasekar S.A., Palaniyandi T., Parthasarathy U., Surendran H., Viswanathan S., Wahab M.R.A., et al. Implications of Toll-like receptors (TLRs) and their signaling mechanisms in human cancers. Pathol Res Pract. 2023;248:154673. DOI: 10.1016/j.prp.2023.154673
30. Kang M., Qiu J., Wei H., Li J. A bibliometric analysis of global research trends of inflammation in cervical cancer: A review. Medicine (Baltimore). 2023;102(49):e36598. DOI: 10.1097/MD.0000000000036598
31. Zheng Y., Liu J., Beeraka N.M., Manogaran P., Vikram P.R.H., Yn L.D., et al. Inflammation and stem cell stochasticity of HPV-induced cervical cancer: epigenetics based biomarkers through microbiome and metabolome for personalized medicine: a systematic review. Curr Med Chem. 2023 Nov 24. DOI: 10.2174/0109298673257429231108 072717
Review
For citations:
Begliarzade S.A., Tamrazov R.I., Musaev E.R., Wang C. Circular RNA Expression Profile in Cervical Cancer and Construction of the Circular RNA‑MicroRNA‑Messenger RNA Regulatory Network. Creative surgery and oncology. 2024;14(2):116-126. (In Russ.) https://doi.org/10.24060/2076-3093-2024-14-2-116-126