Preview

Creative surgery and oncology

Advanced search

Circular RNA Expression Profile in Cervical Cancer and Construction of the Circular RNA‑MicroRNA‑Messenger RNA Regulatory Network

https://doi.org/10.24060/2076-3093-2024-14-2-116-126

Abstract

Introduction. Cervical cancer (CC) remains the most common cancer in women worldwide. However, effective and specific biomarkers for the diagnosis and prognosis of cervical cancer are yet to be found. In recent years, the potential of circular RNAs (circRNAs) as new diagnostic, prognostic and therapeutic tools has received much attention. The current study involved an in-depth bioinformatics research to explore the circRNA-microRNA (miRNA)-messenger RNA (mRNA) regulatory network in order to identify important molecular processes and biological pathways supposedly associated with CC. Materials and methods. The study collected data on the expression of circRNA (GSE102686), miRNA (GSE30656) and mRNA of target genes (GSE9750), based on the Gene Expression Omnibus (GEO) database, in squamous cell carcinoma of the cervix samples and normal squamous epithelium of the cervix, dividing them into study and control groups. Protein-protein interaction (PPI), Gene Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to further understand the function of circRNAs for their target genes. Results. A total of 105 differentially expressed circular RNAs (DECs), 144 differentially expressed microRNAs (DEMs), and 539 differentially expressed target genes (DEGs) were identified for cervical cancer. Concurrently, functional enrichment analysis of GO and KEGG pathways was performed for DEGs. Subsequently, searching databases for circRNA, miRNA and mRNA target genes, as well as PPI network analysis and functional enrichment revealed 3 DECs with significantly high expression levels (hsa_circ_0000745, hsa_circ_0084927 and hsa_circ_0002762), 6 DEMs with reduced expression levels (hsa -miR-145, hsa-miR-876-3p, hsa-miR-1229, hsa-miR-182, hsa-miR-520h and hsa-miR-1252) and 9 key genes such as ANGPT2, COL11A1, MEST, KIF20A, CLN6, FNDC3B, USP18, DLGAP5 and CXCL9, suggesting a potentially significant role in cervical cancer. Conclusion.Understanding the circRNA-miRNA-mRNA regulatory network is of great importance for evaluating the oncogenesis of CC, as well as discoverying new circRNAs as the main regulatory molecules in this network. This is considered to be a new direction in the diagnosis and targeted therapy of cervical cancer.

About the Authors

S. A. Begliarzade
Tyumen State Medical University
Russian Federation

Sema A. Begliarzade — Postgraduate Student, Department of Oncology, Radiology and Radiotherapy

Tyumen



R. I. Tamrazov
Peoples’ Friendship University of Russia
Russian Federation

Rasim I. Tamrazov — Dr. Sci. (Med.), Prof., Department of Oncology, Radiotherapy with a course of Oncourology

Moscow



E. R. Musaev
Sechenov First Moscow State Medical University
Russian Federation

Elmar R. Musaev — Dr. Sci. (Med.), Prof., Corresponding Member of the Russian Academy of Sciences, Department of Oncology

Moscow



C. Wang
First Affiliated Hospital of Harbin Medical University
China

Chunlei Wang — Prof., Department of Neurosurgery

Harbin



References

1. Podwika S.E., Duska L.R. Top advances of the year: Cervical cancer. Cancer. 2023;129(5):657–63. DOI: 10.1002/cncr.34617

2. Robinson E.F., Darby J.P., Moulder J.K. Cervical cancer screening: missed opportunities in a one-track model. Int J Gynecol Cancer. 2023;33(4):646. DOI: 10.1136/ijgc-2023-004311

3. Sokale I.O., Thrift A.P., Montealegre J., Adekanmbi V., Chido-Amajuoyi O.G., Amuta A., et al. Geographic variation in late-stage cervical cancer diagnosis. JAMA Netw Open. 2023;6(11):e2343152. DOI: 10.1001/jamanetworkopen.2023.43152

4. Martínez-Rodríguez F., Limones-González J.E., Mendoza-Almanza B., Esparza-Ibarra E.L., Gallegos-Flores P.I., Ayala-Luján J.L., et al. Understanding cervical cancer through proteomics. Cells. 2021;10(8):1854. DOI: 10.3390/cells10081854

5. Elias M.H., Das S., Abdul Hamid N. Candidate genes and pathways in cervical cancer: a systematic review and integrated bioinformatic analysis. Cancers (Basel). 2023;15(3):853. DOI: 10.3390/cancers15030853

6. Wu B., Xi S. Bioinformatics analysis of differentially expressed genes and pathways in the development of cervical cancer. BMC Cancer. 2021;21(1):733. DOI: 10.1186/s12885-021-08412-4

7. Han Y.H., Ma D.Y., Lee S.J., Mao Y.Y., Sun S.Y., Jin M.H., et al. Bioinformatics analysis of novel targets for treating cervical cancer by immunotherapy based on immune escape. Cancer Genomics Proteomics. 2023;20(4):383–97. DOI: 10.21873/cgp.20390

8. Zhu G., Xiong Z., Chen W., Zhu Z., Wang W. Identification of key biomarkers and related immune cell infiltration in cervical cancer tissue based on bioinformatics analysis. Sci Rep. 2023;13(1):10121. DOI: 10.1038/s41598-023-37346-z

9. Beilerli A., Gareev I., Beylerli O., Yang G., Pavlov V., Aliev G., et al. Circular RNAs as biomarkers and therapeutic targets in cancer. Semin Cancer Biol. 2022;83:242–52. DOI: 10.1016/j.semcancer.2020.12.026

10. Sufianov A., Begliarzade S., Beilerli A., Liang Y., Ilyasova T., Beylerli O. Circular RNAs as biomarkers for lung cancer. Noncoding RNA Res. 2022;8(1):83–8. DOI: 10.1016/j.ncrna.2022.11.002

11. Beilerli A., Begliarzade S., Sufianov A., Ilyasova T., Liang Y., Beylerli O. Circulating ciRS-7 as a potential non-invasive biomarker for epithelial ovarian cancer: An investigative study. Noncoding RNA Res. 2022;7(3):197–204. DOI: 10.1016/j.ncrna.2022.07.004

12. Begliarzade S, Sufianov A, Ilyasova T, Shumadalova A, Sufianov R, Beylerli O, Yan Z. Circular RNA in cervical cancer: Fundamental mechanism and clinical potential. Noncoding RNA Res. 2023 Nov 18;9(1):116-124. DOI: 10.1016/j.ncrna.2023.11.009.

13. Zhang P., Chen M. Circular RNA Databases. Methods Mol Biol. 2021;2362:109–18. DOI: 10.1007/978-1-0716-1645-1_7

14. Panda A.C., Dudekula D.B., Abdelmohsen K., Gorospe M. Analysis of circular RNAs using the web tool circinteractome. Methods Mol Biol. 2018;1724:43–56. DOI: 10.1007/978-1-4939-7562-4_4

15. Luna Buitrago D., Lovering R.C., Caporali A. Insights into online microRNA bioinformatics tools. Noncoding RNA. 2023;9(2):18. DOI: 10.3390/ncrna9020018

16. Soares L.C., de Souza R.J., Oliveira M.A.P. Reviewing FIGO 2018 cervical cancer staging. Acta Obstet Gynecol Scand. 2023;102(12):1757–8. DOI: 10.1111/aogs.14667

17. Li K., Du Y., Li L., Wei D.Q. Bioinformatics approaches for anti-cancer drug discovery. Curr Drug Targets. 2020;21(1):3–17. DOI: 10.2174/138 9450120666190923162203

18. Huang M., He Y.R., Liang L.C., Huang Q., Zhu Z.Q. Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer. World J Gastroenterol. 2017;23(34):6330–8. DOI: 10.3748/wjg.v23.i34.6330

19. Zhang C., Wang J., Wang H., Li J. Interference of the circular RNA sperm antigen with calponin homology and coiled-coil domains 1 suppresses growth and promotes apoptosis of breast cancer cells partially through targeting miR-1236-3p/Chromobox 8 pathway. Clin Breast Cancer. 2024;24(3):e138–51.e2. DOI: 10.1016/j.clbc.2023.11.009

20. Jiao J., Zhang T., Jiao X., Huang T., Zhao L., Ma D., et al. hsa_ circ_0000745 promotes cervical cancer by increasing cell proliferation, migration, and invasion. J Cell Physiol. 2020;235(2):1287–95. DOI: 10.1002/jcp.29045

21. Chen Y., Ling C., Xu Y., Liu J., Tang W. Evaluation of diagnostic and prognostic value of hsa_circ_0084927 and analysis of associated ceRNA network in colorectal cancer. Int J Gen Med. 2022;15:4357–77. DOI: 10.2147/IJGM.S355043

22. Shi P., Zhang X., Lou C., Xue Y., Guo R., Chen S. Hsa_ circ_0084927 regulates cervical cancer advancement via regulation of the miR-634/TPD52 Axis. Cancer Manag Res. 2020;12:9435–48. DOI: 10.2147/CMAR.S272478

23. Qiu F., Ou D., Tan H., Gao Y., Zi D. The circCDK17/miR-122-5p/ASF1B axis regulates the progression of cervical cancer. Histol Histopathol. 2023;38(3):359–71. DOI: 10.14670/HH-18-527

24. Bai H., Song M., Jiao R., Li W., Zhao J., Xiao M., et al. DUSP7 inhibits cervical cancer progression by inactivating the RAS pathway. J Cell Mol Med. 2021;25(19):9306–18. DOI: 10.1111/jcmm.16865

25. Bhattacharjee R., Das S.S., Biswal S.S., Nath A., Das D., Basu A., et al. Mechanistic role of HPV-associated early proteins in cervical cancer: Molecular pathways and targeted therapeutic strategies. Crit Rev Oncol Hematol. 2022;174:103675. DOI: 10.1016/j.critrevonc.2022.103675

26. Yang D., Fan L., Song Z., Fang S., Huang M., Chen P. The KMT1A/ TIMP3/PI3K/AKT circuit regulates tumor growth in cervical cancer. Reprod Biol. 2022;22(3):100644. DOI: 10.1016/j.repbio.2022.100644

27. Lee J.W., Lee J., Moon E.Y. HeLa human cervical cancer cell migration is inhibited by treatment with dibutyryl-cAMP. Anticancer Res. 2014;34(7):3447–55.

28. Mokoala K.M.G., Lawal I.O., Maserumule L.C., Bida M., Maes A., Ndlovu H., et al. Correlation between [68Ga]Ga-FAPI-46 PET Imaging and HIF-1α Immunohistochemical Analysis in Cervical Cancer: Proof-of-Concept. Cancers (Basel). 2023;15(15):3953. DOI: 10.3390/cancers15153953

29. Fan Y., Wang Y., Liu F., Wang H., Li Q. SEC61G promotes cervical cancer proliferation by activating MAPK signaling pathway. Dis Markers. 2022;2022:7016079. DOI: 10.1155/2022/7016079 30 Chandrasekar S.A., Palaniyandi T., Parthasarathy U., Surendran H., Viswanathan S., Wahab M.R.A., et al. Implications of Toll-like receptors (TLRs) and their signaling mechanisms in human cancers. Pathol Res Pract. 2023;248:154673. DOI: 10.1016/j.prp.2023.154673

30. Kang M., Qiu J., Wei H., Li J. A bibliometric analysis of global research trends of inflammation in cervical cancer: A review. Medicine (Baltimore). 2023;102(49):e36598. DOI: 10.1097/MD.0000000000036598

31. Zheng Y., Liu J., Beeraka N.M., Manogaran P., Vikram P.R.H., Yn L.D., et al. Inflammation and stem cell stochasticity of HPV-induced cervical cancer: epigenetics based biomarkers through microbiome and metabolome for personalized medicine: a systematic review. Curr Med Chem. 2023 Nov 24. DOI: 10.2174/0109298673257429231108 072717


Review

For citations:


Begliarzade S.A., Tamrazov R.I., Musaev E.R., Wang C. Circular RNA Expression Profile in Cervical Cancer and Construction of the Circular RNA‑MicroRNA‑Messenger RNA Regulatory Network. Creative surgery and oncology. 2024;14(2):116-126. (In Russ.) https://doi.org/10.24060/2076-3093-2024-14-2-116-126

Views: 555


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)