Outlook for Wound Healing Technologies (a Review)
https://doi.org/10.24060/2076-3093-2020-10-2-130-136
Abstract
Tissue engineering is a medical science dealing with reproduction of biological tissues and organs. This area of medicine opens avenues for creation of organs and tissues using biomaterials and nanostructures to sustain their development, maintenance and function repair in a living organism. The scope of tissue engineering is an artificial recreation of tissues at the fi nest structural level. Prerequisite requirements are a cell source (a donor), artificial extracellular matrix and growth factor. The first organ, which was extracorporally created and successfully introduced in medical practice, is skin. Recent years have witnessed a major leap in 3D technology for reproduction of biological structures. Increasing attention is being paid towards controlled design and production of 2D–3D structures consisting of biological materials and viable cells, the procedure defined as bioproduction or bioprototyping. Skin substitutes obtained with the bioprototyping technology possess a wide range of medical applications, primarily to compensate for resident skin deficiency in wound healing.
About the Authors
V. V. ChebotarevRussian Federation
Vyacheslav V. Chebotarev — Dr. Sci. (Med.), Professor, Department of Dermatovenereology and Cosmetology with a course of Advanced Professional Education.
тел.: +79624475355
Z. R. Khismatullina
Russian Federation
Zarema R. Khismatullina — Dr. Sci. (Med.), Professor, Department of Dermatovenereology with Advanced Professional Education Courses in Dermatovenereology and Cosmetology.
tel.: 8 987 2554301
L. K. Nasyrova
Russian Federation
Liana K. Nasyrova — Internist.
tel.: 89677458360
References
1. Yacenko A.A., Borozda I.V., Kushnarev V.A., Leonov D.V., Kislickij V.M., Ustinov E.M. Possibilities of gelatin-glutar scaff oldes using for cultivation of dermal fi broblasts for tissue engineering for treatment of burn injuries. Transbaikalian Medical Bulletin. 2019;4:146–52 (In Russ.).
2. Sharma P., Kumar P., Sharma R., Bhatt V.D., Dhot P.S. Tissue engineering; current status & futuristic scope. J Med Life. 2019;12(3):225–9. DOI: 10.25122/jml-2019-0032
3. Velasquillo C., Galue E., Rodriquez L., Ibarra C., Guillermo Ibarra-Ibarra C. Skin 3D bioprinting. applications in cosmetology. J Cosmet Dermatol Sci Applicat. 2013;3(1A):85–9. DOI: 10.4236/jcdsa.2013.31A012
4. Tarassoli S.P., Jessop Z.M., Al-Sabah A., Gao N., Whitaker S., Doak S., et al. Skin tissue engineering using 3D bioprinting: An evolving research fi eld. J Plast Reconstr Aesthet Surg. 2018;71(5):615–23. DOI: 10.1016/j.bjps.2017.12.006
5. Smirnova N.V., Dresvyanina E.N., Dobrovolskaya I.P., Yudin V.E., Kolbe K.A. Optimization of mechanical properties and bioactivity of composite matrices based on chitosan and chitin nanofi bril for tissue engineering. Cell and Tissue Biology. 2019;13(5):382–7 (In Russ.). DOI: 10.1134/S0041377119050043
6. Mitroshin A.N., Fedorova Ma.G., Latynova I.V., Nefedov A.A. Modern ideas about the use of scaff olds in the regenerative medicine (literature review). University proceedings. Volga region. Medical sciences. 2019;2(50):133–43 (In Russ.). DOI: 10.21685/2072-3032-2019-2-12
7. Maher P.S., Keatch R.P., Donnelly K., Paxton J.Z. Formed 3D bioscaff olds via rapid prototyping technology. In: Vander Sloten J., Verdonck P., Nyssen M., Haueisen J., (eds) IFMBE Proceedings: 4th European conference of the international federation for medical and biological engineering. New York: Springer; 2009. DOI: 10.1007/978-3-540-89208-3_526
8. Pataky K., Braschler T., Negro A., Renaud P, Lutolf M.P., Brugger J. Microdrop printing of hydrogel bioinks into 3d tissue-like geometries. Adv Mater. 2012;24(3):391–6. DOI: 10.1002/adma.201102800
9. Won J.E., Yun Y.R., Jang J.H., Yang S.H., Kim J.H., Chrzanowski W., et al. Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering. Biomaterials. 2015;56:46–57. DOI: 10.1016/j.biomaterials.2015.03.022
10. Shakoori P., Zhang Q., Le A.D. Applications of Mesenchymal Stem Cells in Oral and Craniofacial Regeneration. Oral Maxillofac Surg Clin North Am. 2017;29(1):19–25. DOI: 10.1016/j.coms.2016.08.009
11. Skardal A., Devarasetty M., Kang H.W., Mead I., Bishop C., Shupe T., et al. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater. 2015;25:24–34. DOI: 10.1016/j.actbio.2015.07.030
12. Lee J.S., Hong J.M., Jung J.W., Shim J.H., Oh J.-H., Cho D.W. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication. 2014;6(2):024103. DOI: 10.1088/1758-
13. /6/2/024103 13 Holmes B., Bulusu K., Plesniak M., Zhang L.G. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaff olds for vascularized bone tissue repair. Nanotechnology. 2016;27(6):064001. DOI: 10.1088/0957-4484/27/6/064001
14. Sevastianov V.I. Cell-engineered constructs in tissue engineering and regenerative medicine. Russian Journal of Transplantology and Artifi cial Organs. 2015;17(2):127–30 (In Russ.). DOI: 10.15825/1995-1191-2015-2-127-130
15. Pryjmaková J., Kaimlová M., Hubáček T., Švorčík V., Siegel J. Nanostructured materials for artifi cial tissue replacements. Int J Mol Sci. 2020;21(7):2521. DOI: 10.3390/ijms21072521
16. Nyame T.T., Chiang H.A., Leavitt T., Ozambela M., Orgill D.P. Tissueengineered skin substitutes. Plast Reconstr Surg. 2015;136(6):1379–88. DOI: 10.1097/PRS.0000000000001748
17. Kalyuzhnaya L.I., Zemlyanoy D.A., Tovpeko D.V., Chebotarev S.V. Analysis of the world experience in the use of umbilical cord biomaterial in tissue engineering and 3D bioprinting. Medicine and health care organization. 2019;4(1):40–55 (In Russ.).
18. Karyakin N.N., Malyshev E.E., Gorbatov R.O., Rotich G.K. 3D printing technique for patient-specifi c instrumentation in total knee arthroplasty. Traumatology and Orthopedics of Russia. 2017;23(3):110–8 (In Russ.). DOI: 10.21823/2311-2905-2017-23-3-110-118
19. Li J., Wu Ch., Chu P.K., Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Sci Engineering: R: Reports. 2020;140:100543. DOI: 10.1016/j.mser.2020.100543
20. Montheil T., Maumus M., Valot L., Lebrun A., Martinez J., Amblard M., et al. Inorganic sol-gel polymerization for hydrogel bioprinting. ACS Omega. 2020;5(6):2640–7. DOI: 10.1021/acsomega.9b03100
21. Vasyutin I.A., Lyundup A.V., Vinarov A.Z., Butnaru D.V., Kuznetsov S.L. Urethra reconstruction with tissue-engineering technology. Annals of the Russian academy of medical. 2017;72(1):17–25 (In Russ.) DOI: 10.15690/vramn771
22. Li X., Su X. Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B. 2018;6(29):4714–30.
23. Gardien K.L.M., Middelkoop E., Ulrich M.M.W. Progress towards cell-based wound treatments. Regen Med. 2014;9(2):201–18. DOI: 10.2217/rme.13.97
24. Atala A. Engineering organs. Curr Opin Biotech. 2009;20(5):575–92. DOI: 10.1016/j.copbio.2009.10.003
25. Singh D., Singh D., Han S.S. 3D Printing of scaff old for cells delivery: advances in skin tissue engineering. Polymers (Basel). 2016;8(1):19. DOI: 10.3390/polym8010019
26. Vijayavenkataraman S., Yan W.C., Lu W.F., Wang C.H., Fuh J.Y.H. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018;132:296–332. DOI: 10.1016/j.addr.2018.07.004
27. Michael S., Sorg H., Peck C.T., Koch L., Deiwick A., Chichkov B., et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8(3):e57741. DOI: 10.1371/journal.pone.0057741
28. Jorgensen A.M., Varkey M., Gorkun A., Clouse C., Xu L., Chou Z., et al. Bioprinted skin recapitulates normal collagen remodeling in fullthickness wounds. Tissue Eng Part A. 2020;26(9–10):512–26. DOI: 10.1089/ten.TEA.2019.0319
29. Pamuditha N.S., Green B.J., Altamentova S.M., Rocheleau J.V. A microfl uidic device designed to induce media fl ow throughout pancreatic islets while limiting shear-induced damage. Lab Chip. 2013;13(22):4374–84. DOI: 10.1039/c3lc50680k
30. Sankar K.S., Altamentova S.M., Rocheleau J.V. Hypoxia induction in cultured pancreatic islets enhances endothelial cell morphology and survival while maintaining beta-cell function. PLoS One. 2019;14(10):e0222424. DOI: 10.1371/journal.pone.0222424
31. Koch L., Kuhn S., Sorg H., Gruene M., Schlie S., Gaebel R., et al. Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods. 2010;16(5):847–54. DOI: 10.1089/ten.TEC.2009.0397
32. Koch L., Gruene M., Unger C., Chichkov B. Laser assisted cell printing. Curr Pharm Biotechnol. 2013;14(1):91–7. PMID: 23570054
33. Zokaei S., Farhud D.D., Keykhaei M., Zarif Yeganeh M., Rahimi H., Moravvej H. Cultured epidermal melanocyte transplantation in vitiligo: a review article. Iran J Public Health. 2019;48(3):388–99. PMID: 31223565
34. Redondo P., Gímenez de Azcarate A., Núñez-Córdoba J.M., Andreu E.J., García-Guzman M., Aguado L., et al. Effi cacy of autologous melanocyte transplantation on amniotic membrane in patients with stable leukoderma: a randomized clinical trial. JAMA Dermatol. 2015;151(8):897–9. DOI: 10.1001/jamadermatol.2015.0299
35. Jiménez-Acosta F., Ponce-Rodríguez I. Follicular unit extraction for hair transplantation: an update. Actas Dermosifi liogr. 2017;108(6):532–7. DOI: 10.1016/j.ad.2017.02.015
36. Zito P.M., Raggio B.S. Hair Transplantation. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020.
37. Murphy S., Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85. DOI: 10.1038/nbt.2958
38. Konstantinova M.V., Khaytsev N.V., Kravtsova A.A., Balashov L.D. Skin wounds’ healing basic problems and the use of skin substitutes. Pediatrician (St. Petersburg). 2015;6(2):85–95 (In Russ.). DOI: 10.17816/PED6285-95
39. Meleshina A.V., Bystrova A.S., Rogovaya O.S., Vorotelyak E.A., Vasiliev A.V., Zagaynova E.V. Skin tissue-engineering constructs and stem cells application for the skin equivalents creation (Review). Modern Technologies in Medicine. 2017;9(1):198–218 (In Russ.). DOI: 10.17691/stm2017.9.1.24
Review
For citations:
Chebotarev V.V., Khismatullina Z.R., Nasyrova L.K. Outlook for Wound Healing Technologies (a Review). Creative surgery and oncology. 2020;10(2):130-136. (In Russ.) https://doi.org/10.24060/2076-3093-2020-10-2-130-136