Intratumoural Effector Cell Subpopulations in Breast Cancer: a Literature Review and Own Data Report
https://doi.org/10.24060/2076-3093-2021-11-4-328-336
Abstract
Breast cancer (BC) is most prevalent female malignancy worldwide. Despite advances in BC diagnosis and progress in drug therapy, a series of challenges associated with emergent tumour resistance causing the disease escalation still remain. Immune evasion is among the driving forces of tumour resistance against modern treatments, which promotes world-active research into the mechanisms of tumour—immune interaction.
Tumour microenvironment is known to contribute greatly to the nature of this interaction. Immune cells are constitutive of tumour microenvironment as tumour-associated macrophages, myeloid-derived suppressor cells and tumour-infi ltrating lymphocytes. Tumour-infi ltrating lymphocytes are represented by B-, T- and NK-cells, which localisation and subpopulation structure in tumour may possess a prognostic and clinical significance. Th e infi ltration density by certain effector cell types prior to chemotherapy is an important predictor of patient survival. Putting otherwise, the presence of effector lymphocyte subpopulations in tumour defi nes the strength of antitumour immunity and may establish the success of drug treatment.
This study analysed the infiltration levels of CD3, CD4, CD20 and CD38 lymphocytes in several molecular BC subtypes. Tumour immunophenotyping was performed in cryosectioning and immunofl uorescence assays with a ZEISS AXIOSKOP microscope, Germany. We analysed 96 luminal BC (37 subtype A (38.5 %), 52 B-Her2-negative subtype (54.2 %), 7 B-Her2-positive subtype (7.3 %)) and non-luminal BC samples (3 HER2+ subtype (14.3 %), 18 triple-negative subtype (85.7 %)). The infiltration and antigen expression patterns have been assessed. Analyses of tumour-infi ltrating subpopulations revealed lower infiltration in luminal BC vs. other subtypes, albeit at no significance.
About the Authors
D. A. RyabchikovRussian Federation
Denis A. Ryabchikov, Dr. Sci. (Med.), Department of Surgery No. 16
Moscow
S. V. Chulkova
Russian Federation
Svetlana V. Chulkova, Cand. Sci. (Med.), Assoc. Prof., Laboratory of Haematopoiesis Immunology, Department of Oncology and Radiotherapy
Moscow
F. A. Shamilov
Russian Federation
Farkhad A. Shamilov, Cand. Sci. (Med.), Department of Surgery No. 16
Moscow
N. V. Chanturiya
Russian Federation
Naily V. Chanturiya, Department of Oncology for Advanced Professional Education, Department of Surgery No. 16
Moscow
S. D. Zheltikov
Russian Federation
Sergey D. Zheltikov, Department of Oncology for Advanced Professional Education, Department of Surgery
No. 16
Moscow
N. N. Tupitsyn
Russian Federation
Nikolay N. Tupitsyn, Dr. Sci. (Med.), Prof., Laboratory of Haematopoiesis Immunology
Moscow
References
1. Ferlay J., Colombet M., Soerjomataram I., Parkin D.M., Piñeros M., Znaor A., et al. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021 Apr 5. DOI: 10.1002/ijc.33588
2. Kaprin A.D., Starinskiy V.V., Petrova G.V. Malignant neoplasms in Russia in 2019 (morbidity and mortality). Мoscow; 2019 (In Russ.).
3. Crabtree J.S., Miele L. Breast cancer stem cells. Biomedicines. 2018;6(3):77. DOI: 10.3390/biomedicines6030077
4. Chulkova S.V., Tupitsyn N.N., Djumanazarov T.M., Palladina A.D., Kupryshina N.A., Chernysheva O.A., et al. Detection of disseminated tumor cells in the bone marrow of patients with non-small cell lung cancer. Russian Journal of Biotherapy. 2020;19(3):29–37 (In Russ.). DOI: 10.17650/1726-9784-2020-19-3-29-37
5. Wimberly H., Brown J.R., Schalper K., Haack H., Silver M.R., Nixon C., et al. PD-L1 expression correlates with tumor-infi ltrating lymphocytes and response to neoadjuvant chemotherapy in breast cancer. Cancer Immunol Res. 2015;3(4):326–32. DOI: 10.1158/2326-6066.CIR-14-0133
6. Chulkova S.V., Markina I.G., Antipova A.S., Grishchenko N.V., Pustynsky I.V., Egorova A.V., et al. The role of stem tumor cells in caricogenesis and the forecast of melanoma. Vestnik Rossiiskogo nauchnogo centra rentgenoradiologii. 2018;18(4):100–16 (In Russ.).
7. Ryabchikov D.A., Abdullaeva E.I., Dudina I.A., Chulkova S.V., Denchik D.A., Chkhikvadze N.V., et al. The role of micro-RNA in cancerogenesis and breast cancer prognosis. Vestnik Rossiiskogo nauchnogo centra rentgenoradiologii. 2018;18(2):5 (In Russ.).
8. Chulkova S.V. Stomach cancer stem cell biomarkers. problems of biological, medical and pharmaceutical chemistry. 2018;21(10):11–7 (In Russ.). DOI: 10.29296/25877313-2018-10-02
9. Chernysheva O., Markina I., Demidov L., Kupryshina N., Chulkova S., Palladina A., et al. Bone marrow involvement in melanoma. Potentials for detection of disseminated tumor cells and characterization of their subsets by flow cytometry. Cells. 2019;8(6):627. DOI: 10.3390/cells8060627
10. Mao Y., Qu Q., Chen X., Huang O., Wu J., Shen K. The prognostic value of tumor-infi ltrating lymphocytes in breast cancer: a systematic review and meta-analysis. PLoS One. 2016;11(4):e0152500. DOI: 10.1371/journal.pone.0152500
11. Titov K.S., Kazakov A.M., Baryshnikova M.A., Ryabchikov D.A., Chulkova S.V., Zaryanov D.A. Some molecular and immunologic prognostic factors of triple negative breast cancer. Gynecologic Oncology. 2019;4(32):26–34 (In Russ.). DOI: 10.52313/22278710_2019_4_26
12. Ryabchikov D.A., Vorotnikov I.K., Talipov O.A., Chulkova S.V., Loginov V.I., Snegovoy A.V., et al. MicroRNA and their role in pathogenesis and diagnosis of breast cancer. Medical alphabet. 2020;8:12–5 (In Russ.). DOI: 10.33667/2078-5631-2020-8-12-15
13. Liu X., Feng D., Liu D., Wang S., Yu X., Dai E., et al. Dissecting the origin of breast cancer subtype stem cell and the potential mechanism of malignant transformation. PLoS One. 2016;11(10):e0165001.7. DOI: 10.1371/journal.pone.0165001
14. Zhou J., Chen Q., Zou Y., Chen H., Qi L., Chen Y. Stem cells and cellular origins of breast cancer: updates in the rationale, controversies, and therapeutic implications. Front Oncol. 2019;9:820. DOI: 10.3389/ fonc.2019.00820
15. Chulkova S.V., Ryabchikov D.A., Dudina I.A., Kazakov A.M., Egorova A.V., Titov K.S., et al. The prospects for the use of microrna as diagnostic and prognostic melanoma biomarkers. Russian Journal of Biotherapy. 2019;18(4):51–6 (In Russ.). DOI: 10.17650/1726-9784- 2019-18-4-51-56
16. Denkert C., von Minckwitz G., Darb-Esfahani S., Lederer B., Heppner B.I., Weber K.E., et al. Tumour-infi ltrating lymphocytes and prognosis in diff erent subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018;19(1):40–50. DOI: 10.1016/S1470-2045(17)30904-X
17. Ryabchikov D.A., Beznos O.A., Dudina I.A., Vorotnikov I.K., Denchik D.A., Chulkova S.V., et al. DIsseminated tumor cells of luminal breast cancer patients. Russian Journal of Biotherapy. 2018;17(1):53–7 (In Russ.). DOI: 10.17650/1726-9784-2018-17-1-53-57
18. Chang R.B., Beatty G.L. The interplay between innate and adaptive immunity in cancer shapes the productivity of cancer immunosurveillance. J Leukoc Biol. 2020;108(1):363–76. DOI: 10.1002/ JLB.3MIR0320-475R
19. Gerada Ch., Ryan K.M. Autophagy, the innate immune response and cancer. Mol Oncol. 2020;14(9):1913–29. DOI: 10.1002/1878- 0261.12774
20. Chulkova S.V., Stilidi I.S., Glukhov E.V., Grivtsova L.Yu., Nered S.N., Tupitsyn N.N. The spleen as a peripheral immunity organ. Splenectomy eff ect on the immunity status. Journal of N.N. Blokhin Russian Cancer Research Center. 2014;25(1–2(94)):21–25 (In Russ.).
21. Sonnenberg G.F., Hepworth M.R. Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol. 2019;19(10):599–613. DOI: 10.1038/s41577-019-0194-8
22. Chulkova S.V., Sholokhova E.N., Grishchenko N.V., Ryabchikov D.A., Grivtsova L.Yu., Bazin I.S., et al. The role of B-1 lymphocytes in antitumor immunity in patients with gastric cancer. Russian Journal of Biotherapy. 2018;17(4):64–70 (In Russ.). DOI: 10.17650/1726- 9784-2018-17-4-64-70
23. Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453–61. DOI: 10.2741/2692
24. Chaudhary B., Elkord E. Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines (Basel). 2016;4(3):28. DOI: 10.3390/vaccines4030028
25. Kim J.H., Kim B.S., Lee S.K. Regulatory T cells in tumor microenvironment and approach for anticancer immunotherapy. Immune Netw. 2020;20(1):e4. DOI: 10.4110/in.2020.20.e4
26. Gu-Trantien C., Loi S., Garaud S., Equeter C., Libin M., de Wind A., et al. CD4⁺ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest. 2013;123(7):2873–92. DOI: 10.1172/ JCI67428
27. Grzywa T.M., Sosnowska A., Matryba P., Rydzynska Z., Jasinski M., Nowis D., et al. Myeloid cell-derived arginase in cancer immune response. Front Immunol. 2020;11:938. DOI: 10.3389/ fi mmu.2020.00938
28. Zhao X., Qu J., Sun Y., Wang J., Liu X., Wang F., et al. Prognostic signifi cance of tumor-associated macrophages in breast cancer: a meta-analysis of the literature. Oncotarget. 2017;8(18):30576–86. DOI: 10.18632/oncotarget.15736
29. Gao G., Wang Z., Qu X., Zhang Z. Prognostic value of tumor-infi ltrating lymphocytes in patients with triple-negative breast cancer: a systematic review and meta-analysis. BMC Cancer. 2020;20(1):179. DOI: 10.1186/s12885-020-6668-z
30. Shang B., Liu Y., Jiang S.J., Liu Y. Prognostic value of tumor-infi ltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep. 2015;5:15179. DOI: 10.1038/srep15179
31. Kawai O., Ishii G., Kubota K., Murata Y., Naito Y., Mizuno T., et al. Predominant infi ltration of macrophages and CD8(+) T Cells in cancer nests is a signifi cant predictor of survival in stage IV nonsmall cell lung cancer. Cancer. 2008;113(6):1387–95. DOI: 10.1002/cncr.23712
32. Hornychova H., Melichar B., Tomsova M., Mergancova J., Urminska H., Ryska A. Tumor-infi ltrating lymphocytes predict response to neoadjuvant chemotherapy in patients with breast carcinoma. Cancer Invest. 2008;26(10):1024–31. DOI: 10.1080/07357900802098165
33. Schreiber R.D., Old L.J., Smyth M.J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70. DOI: 10.1126/science.1203486
34. Cimino-Mathews A., Ye X., Meeker A., Argani P., Emens L.A. Metastatic triple-negative breast cancers at fi rst relapse have fewer tumorinfi ltrating lymphocytes than their matched primary breast tumors: a pilot study. Hum Pathol. 2013;44(10):2055–63. DOI: 10.1016/j. humpath.2013.03.010
35. Ruff ell B., Au A., Rugo H.S., Esserman L.J., Hwang E.S., Coussens L.M. Leukocyte composition of human breast cancer. Proc Natl Acad Sci USA. 2012;109(8):2796–801. DOI: 10.1073/pnas.1104303108
36. Gobert M., Treilleux I., Bendriss-Vermare N., Bachelot T., GoddardLeon S., Arfi V., et al. Regulatory T cells recruited through CCL22/ CCR4 are selectively activated in lymphoid infi ltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 2009;69(5):2000–9. DOI: 10.1158/0008-5472.CAN-08-2360
37. Ismael G., Hegg R., Muehlbauer S., Heinzmann D., Lum B., Kim S.B., et al. Subcutaneous versus intravenous administration of (neo)adjuvant trastuzumab in patients with HER2-positive, clinical stage I-III breast cancer (HannaH study): a phase 3, open-label, multicentre, randomised trial. Lancet Oncol. 2012;13(9):869–78. DOI: 10.1016/ S1470-2045(12)70329-7
38. Denkert C., Loibl S., Noske A., Roller M., Müller B.M., Komor M., et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28(1):105–13. DOI: 10.1200/JCO.2009.23.7370
39. Mahmoud S.M., Paish E.C., Powe D.G., Macmillan R.D., Grainge M.J., Lee A.H., et al. Tumor-infi ltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55. DOI: 10.1200/JCO.2010.30.5037
40. Ono M., Tsuda H., Shimizu C., Yamamoto S., Shibata T., Yamamoto H., et al. Tumor-infi ltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Res Treat. 2012;132(3):793–805. DOI: 10.1007/ s10549-011-1554-7
41. West N.R., Milne K., Truong P.T., Macpherson N., Nelson B.H., Watson P.H. Tumor-infi ltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res. 2011;13(6):R126. DOI: 10.1186/bcr3072
42. Seo A.N., Lee H.J., Kim E.J., Kim H.J., Jang M.H., Lee H.E., et al. Tumour-infi ltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer. 2013;109(10):2705–13. DOI: 10.1038/ bjc.2013.634
43. Oda N., Shimazu K., Naoi Y., Morimoto K., Shimomura A., Shimoda M., et al. Intratumoral regulatory T cells as an independent predictive factor for pathological complete response to neoadjuvant paclitaxel followed by 5-FU/epirubicin/cyclophosphamide in breast cancer patients. Breast Cancer Res Treat. 2012;136(1):107–16. DOI: 10.1007/s10549-012-2245-8
44. Issa-Nummer Y., Darb-Esfahani S., Loibl S., Kunz G., Nekljudova V., Schrader I., et al. Prospective validation of immunological infi ltrate for prediction of response to neoadjuvant chemotherapy in HER2-negative breast cancer — a substudy of the neoadjuvant GeparQuinto trial. PLoS One. 2013;8(12):e79775. DOI: 10.1371/journal.pone.0079775
45. Ladoire S., Mignot G., Dabakuyo S., Arnould L., Apetoh L., Rébé C., et al. In situ immune response aft er neoadjuvant chemotherapy for breast cancer predicts survival. J Pathol. 2011;224(3):389–400. DOI: 10.1002/path.2866
46. Li Y., Tang J., Pan D.X., Sun L.D., Chen C., Liu Y., et al. Versatile imaging and therapeutic platform based on dual-band luminescent lanthanide nanoparticles toward tumor metastasis inhibition. ACS Nano. 2016;10(2):2766–73. DOI: 10.1021/ acsnano.5b07873
47. Liu J., Huang L., Tian X., Chen X., Shao Y., Xie F., et al. Magnetic and fl uorescent Gd2 O3 :Yb3+/Ln3+ nanoparticles for simultaneous upconversion luminescence/MR dual modal imaging and NIR-induced photodynamic therapy. Int J Nanomedicine. 2016;12:1–14. DOI: 10.2147/IJN.S118938
48. Zhou Y., Shao N., Aierken N., Xie C., Ye R., Qian X., et al. Prognostic value of tumor-infi ltrating Foxp3+ regulatory T cells in patients with breast cancer: a meta-analysis. J Cancer. 2017;8(19):4098–105. DOI: 10.7150/jca.21030
49. Demir L., Yigit S., Ellidokuz H., Erten C., Somali I., Kucukzeybek Y., et al. Predictive and prognostic factors in locally advanced breast cancer: effect of intratumoral FOXP3+ Tregs. Clin Exp Metastasis. 2013;30(8):1047–62. DOI: 10.1007/s10585- 013-9602-9.
Review
For citations:
Ryabchikov D.A., Chulkova S.V., Shamilov F.A., Chanturiya N.V., Zheltikov S.D., Tupitsyn N.N. Intratumoural Effector Cell Subpopulations in Breast Cancer: a Literature Review and Own Data Report. Creative surgery and oncology. 2021;11(4):328-336. (In Russ.) https://doi.org/10.24060/2076-3093-2021-11-4-328-336