Preview

Creative surgery and oncology

Advanced search

Mechanisms of Spinal Metastases: New Perspectives

https://doi.org/10.24060/2076-3093-2024-14-2-163-173

Abstract

Metastases are considered to be a key mechanism for the spread of malignant tumors, whereby tumor cells separate from the primary site and form new tumor nodes in various parts of the body. Bone tissue, including the spine, is often affected by metastases, which can significantly worsen the prognosis and quality of life of patients. Metastasis comprises a complex multistep process during which tumor cells undergo molecular and phenotypic changes enabling them to migrate and adapt to new conditions in the body. Bone metastases can be osteolytic, causing bone destruction, or osteoblastic, stimulating excessive bone formation. Tumor cells enter the bone and activate osteoclasts or osteoblasts, thereby leading to remodelling of bone tissue and formation of a closed cycle of bone destruction and tumor growth. The characteristics of tumor cells are determined by their genetic and epigenetic changes, as well as interaction with the environment. Understanding the molecular and pathophysiological aspects of spinal metastasis is essential to developing effective treatments and improving therapeutic approaches. The paper considers new therapeutic approaches aimed at overcoming spinal metastasis in order to improve the prognosis and quality of life of patients.

About the Authors

O. A. Beylerli
Central Research Laboratory, Bashkir State Medical University
Russian Federation

Ozal A. Beylerli — Cand. Sci. (Med.), Senior Researcher

Ufa



I. F. Gareev
Central Research Laboratory, Bashkir State Medical University
Russian Federation

Ilgiz F. Gareev — Cand. Sci. (Med.), Senior Researcher

Ufa



V. N. Pavlov
Bashkir State Medical University
Russian Federation

Valentin N. Pavlov — Dr. Sci. (Med.), Prof., Academician of the Russian Academy of Sciences, Department of Urology

Ufa



E. R. Musaev
Sechenov First Moscow State Medical University
Russian Federation

Elmar R. Musaev — Dr. Sci. (Med.), Prof., Corresponding Member of the Russian Academy of Sciences, Department of Oncology

Moscow



G. E. Chmutin
Peoples’ Friendship University of Russia
Russian Federation

Gennadiy E. Chmutin — Dr. Sci. (Med.), Prof., Martynov Department of Nervous Diseases and Neurosurgery

Moscow



C. Wang
First Affiliated Hospital of Harbin Medical University
China

Chunlei Wang — Prof., Neurosurgery Unit

Harbin



References

1. Wu M.Y., Li C.J., Yiang G.T., Cheng Y.L., Tsai A.P., Hou Y.T., et al. Molecular regulation of bone metastasis pathogenesis. Cell Physiol Biochem. 2018;46(4):1423–38. DOI: 10.1159/000489184

2. McCabe F.J., Jadaan M.M., Byrne F., Devitt A.T., McCabe J.P. Spinal metastasis: The rise of minimally invasive surgery. Surgeon. 2021:S1479-666X(21)00140-2. DOI: 10.1016/j.surge.2021.08.007

3. Luksanapruksa P., Buchowski J.M., Hotchkiss W., Tongsai S., Wilartratsami S., Chotivichit A. Prognostic factors in patients with spinal metastasis: a systematic review and meta-analysis. Spine J. 2017;17(5):689–708. DOI: 10.1016/j.spinee.2016.12.003

4. Kim H.J., McLawhorn A.S., Goldstein M.J., Boland P.J. Malignant osseous tumors of the pediatric spine. J Am Acad Orthop Surg. 2012;20(10):646–56. DOI: 10.5435/JAAOS-20-10-646

5. Patnaik S., Turner J., Inaparthy P., Kieffer W.K. Metastatic spinal cord compression. Br J Hosp Med (Lond). 2020;81(4):1–10. DOI: 10.12968/hmed.2019.0399

6. Choi D., Bilsky M., Fehlings M., Fisher C., Gokaslan Z. Spine oncology-metastatic spine tumors. Neurosurgery. 2017;80(3S):S131–7. DOI: 10.1093/neuros/nyw084

7. Challapalli A., Aziz S., Khoo V., Kumar A., Olson R., Ashford R.U., et al. Spine and non-spine bone metastases — current controversies and future direction. Clin Oncol (R Coll Radiol). 2020;32(11):728–44. DOI: 10.1016/j.clon.2020.07.010

8. Katsimbri P. The biology of normal bone remodelling. Eur J Cancer Care (Engl). 2017;26(6). DOI: 10.1111/ecc.12740 9 Mizoguchi T., Ono N. The diverse origin of bone-forming osteoblasts. J Bone Miner Res. 2021;36(8):1432–47. DOI: 10.1002/jbmr.4410

9. Kim J.M., Lin C., Stavre Z., Greenblatt M.B., Shim J.H. Osteoblast-osteoclast communication and bone homeostasis. Cells. 2020;9(9):2073. DOI: 10.3390/cells9092073

10. Robling A.G., Bonewald L.F. The osteocyte: new insights. Annu Rev Physiol. 2020;82:485–506. DOI: 10.1146/annurev-physiol-021119-034332

11. Zalfa C., Paust S. Natural killer cell interactions with myeloid derived suppressor cells in the tumor microenvironment and implications for cancer immunotherapy. Front Immunol. 2021;12:633205. DOI: 10.3389/fimmu.2021.633205

12. Wein M.N., Kronenberg H.M. Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb Perspect Med. 2018;8(8):a031237. DOI: 10.1101/cshperspect.a031237

13. Zhu S., Liu M., Bennett S., Wang Z., Pfleger K.D.G., Xu J. The molecular structure and role of CCL2 (MCP-1) and C-C chemokine receptor CCR2 in skeletal biology and diseases. J Cell Physiol. 2021;236(10):7211–22. DOI: 10.1002/jcp.30375

14. Udagawa N., Koide M., Nakamura M., Nakamichi Y., Yamashita T., Uehara S., et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021;39(1):19–26. DOI: 10.1007/s00774-020-01162-6

15. Kitaura H., Marahleh A., Ohori F., Noguchi T., Shen W.R., Qi J., et al. Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci. 2020;21(14):5169. DOI: 10.3390/ijms21145169

16. Yang L., Kang M., He R., Meng B., Pal A., Chen L., et al. Microanatomical changes and biomolecular expression at the PDL-entheses during experimental tooth movement. J Periodontal Res. 2019;54(3):251–8. DOI: 10.1111/jre.12625

17. Yang D., Wan Y. Molecular determinants for the polarization of macrophage and osteoclast. Semin Immunopathol. 2019;41(5):551–63. DOI: 10.1007/s00281-019-00754-3

18. De Cicco P., Ercolano G., Ianaro A. The new era of cancer immunotherapy: targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol. 2020;11:1680. DOI: 10.3389/fimmu.2020.01680

19. Li X., Liu Y., Wu B., Dong Z., Wang Y., Lu J., et al. Potential role of the OPG/RANK/RANKL axis in prostate cancer invasion and bone metastasis. Oncol Rep. 2014;32(6):2605–11. DOI: 10.3892/or.2014.3511

20. Deligiorgi M.V., Panayiotidis M.I., Griniatsos J., Trafalis D.T. Harnessing the versatile role of OPG in bone oncology: counterbalancing RANKL and TRAIL signaling and beyond. Clin Exp Metastasis. 2020;37(1):13–30. DOI: 10.1007/s10585-019-09997-8

21. Takegahara N., Kim H., Choi Y. RANKL biology. Bone. 2022;159:116353. DOI: 10.1016/j.bone.2022.116353

22. Jaffee W.F. Tumors and tumorous conditions of the bones and joints. Philadelphia, PA: Lea and Febiger; 1958.

23. Gao Z.Y., Zhang T., Zhang H., Pang C.G., Xia Q. Effectiveness of preoperative embolization in patients with spinal metastases: a systematic review and meta-analysis. World Neurosurg. 2021;152:e745–57. DOI: 10.1016/j.wneu.2021.06.062

24. Perrin R.G., Laxton A.W. Metastatic spine disease: epidemiology, pathophysiology, and evaluation of patients. Neurosurg Clin N Am. 2004;15(4):365–73. DOI: 10.1016/j.nec.2004.04.018

25. Nater A., Sahgal A., Fehlings M. Management — spinal metastases. Handb Clin Neurol. 2018;149:239–55. DOI: 10.1016/B978-0-12- 811161-1.00016-5

26. Gilbert R.W., Kim J.H., Posner J.B. Epidural spinal cord compression from metastatic tumor: diagnosis and treatment. Ann Neurol. 1978;3(1):40–51. DOI: 10.1002/ana.410030107

27. Turajlic S., Swanton C. Metastasis as an evolutionary process. Science. 2016;352(6282):169–75. DOI: 10.1126/science.aaf2784

28. Hofbauer L.C., Bozec A., Rauner M., Jakob F., Perner S., Pantel K. Novel approaches to target the microenvironment of bone metastasis. Nat Rev Clin Oncol. 2021;18(8):488–505. DOI: 10.1038/s41571-021-00499-9

29. Santos J.L.M., Kalhorn S.P. Anatomy of the posterolateral spinal epidural ligaments. Surg Neurol Int. 2021;12:33. DOI: 10.25259/SNI_894_2020

30. Nathoo N., Caris E.C., Wiener J.A., Mendel E. History of the vertebral venous plexus and the significant contributions of Breschet and Batson. Neurosurgery. 2011;69(5):1007–14; disc. 1014. DOI: 10.1227/NEU.0b013e3182274865

31. Onuigbo W.I. Batson’s theory of vertebral venous metastasis: a review. Oncology. 1975;32(3–4):145–50. DOI: 10.1159/000225060. PMID: 1221328

32. Wu S., Pan Y., Mao Y., Chen Y., He Y. Current progress and mechanisms of bone metastasis in lung cancer: a narrative review. Transl Lung Cancer Res. 2021;10(1):439–51. DOI: 10.21037/tlcr-20-835

33. Sturge J., Caley M.P., Waxman J. Bone metastasis in prostate cancer: emerging therapeutic strategies. Nat Rev Clin Oncol. 2011;8(6):357–68. DOI: 10.1038/nrclinonc.2011.67

34. Spano D., Heck C., De Antonellis P., Christofori G., Zollo M. Molecular networks that regulate cancer metastasis. Semin Cancer Biol. 2012;22(3):234–49. DOI: 10.1016/j.semcancer.2012.03.006

35. Satcher R.L., Zhang X.H. Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer. 2022;22(2):85– 101. DOI: 10.1038/s41568-021-00406-5 37 Raubenheimer E.J., Noffke C.E. Pathogenesis of bone metastasis: a review. J Oral Pathol Med. 2006;35(3):129–35. DOI: 10.1111/j.1600-0714.2006.00360.x

36. Joyce J.A., Pollard J.W. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52. DOI: 10.1038/nrc2618

37. Liu Y., Qing H., Su X., Wang C., Li Z., Liu S. Association of CD44 gene polymorphism with survival of NSCLC and risk of bone metastasis. Med Sci Monit. 2015;21:2694–700. DOI: 10.12659/MSM.894357

38. Chen F., Han Y., Kang Y. Bone marrow niches in the regulation of bone metastasis. Br J Cancer. 2021;124(12):1912–20. DOI: 10.1038/s41416-021-01329-6

39. Clézardin P., Coleman R., Puppo M., Ottewell P., Bonnelye E., Paycha F., et al. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev. 2021;101(3):797–855. DOI: 10.1152/physrev.00012.2019

40. Fornetti J., Welm A.L., Stewart S.A. Understanding the bone in cancer metastasis. J Bone Miner Res. 2018;33(12):2099–113. DOI: 10.1002/jbmr.3618

41. Eleraky M., Papanastassiou I., Vrionis F.D. Management of metastatic spine disease. Curr Opin Support Palliat Care. 2010;4(3):182–8. DOI: 10.1097/SPC.0b013e32833d2fdd

42. Kaur M., Nagpal M., Singh M. Osteoblast-n-Osteoclast: making headway to osteoporosis treatment. Curr Drug Targets. 2020;21(16):1640– 51. DOI: 10.2174/1389450121666200731173522

43. Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond). 2019;39(1):76. DOI: 10.1186/s40880-019-0425-1

44. Tahara R.K., Brewer T.M., Theriault R.L., Ueno N.T. Bone metastasis of breast cancer. Adv Exp Med Biol. 2019;1152:105–29. DOI: 10.1007/978-3-030-20301-6_7

45. Győri D.S., Mócsai A. Osteoclast signal transduction during bone metastasis formation. Front Cell Dev Biol. 2020;8:507. DOI: 10.3389/fcell.2020.00507

46. Zhang R., Li J., Assaker G., Camirand A., Sabri S., Karaplis A.C., et al. Parathyroid hormone-related protein (PTHrP): an emerging target in cancer progression and metastasis. Adv Exp Med Biol. 2019;1164:161– 78. DOI: 10.1007/978-3-030-22254-3_13

47. Edwards C.M., Johnson R.W. From good to bad: the opposing effects of PTHrP on tumor growth, dormancy, and metastasis throughout cancer progression. Front Oncol. 2021;11:644303. DOI: 10.3389/fonc.2021.644303

48. Zheng X., Kang W., Liu H., Guo S. Inhibition effects of total flavonoids from Sculellaria barbata D. Don on human breast carcinoma bone metastasis via downregulating PTHrP pathway. Int J Mol Med. 2018;41(6):3137–46. DOI: 10.3892/ijmm.2018.3515

49. Okamoto K. Role of RANKL in cancer development and metastasis. J Bone Miner Metab. 2021;39(1):71–81. DOI: 10.1007/s00774-020-01182-2

50. David Roodman G., Silbermann R. Mechanisms of osteolytic and osteoblastic skeletal lesions. Bonekey Rep. 2015;4:753. DOI: 10.1038/bonekey.2015.122

51. Fang J., Xu Q. Differences of osteoblastic bone metastases and osteolytic bone metastases in clinical features and molecular characteristics. Clin Transl Oncol. 2015;17(3):173–9. DOI: 10.1007/s12094-014-1247-x

52. Buijs J.T., Stayrook K.R., Guise T.A. The role of TGF-β in bone metastasis: novel therapeutic perspectives. Bonekey Rep. 2012;1:96. DOI: 10.1038/bonekey.2012.96

53. Syed V. TGF-β signaling in cancer. J Cell Biochem. 2016;117(6):1279– 87. DOI: 10.1002/jcb.25496

54. Trivedi T., Pagnotti G.M., Guise T.A., Mohammad K.S. The role of TGF-β in bone metastases. Biomolecules. 2021;11(11):1643. DOI: 10.3390/biom11111643

55. Tiedemann K., Hussein O., Komarova S.V. Role of altered metabolic microenvironment in osteolytic metastasis. Front Cell Dev Biol. 2020;8:435. DOI: 10.3389/fcell.2020.00435

56. Teicher B.A. TGFβ-directed therapeutics: 2020. Pharmacol Ther. 2021;217:107666. DOI: 10.1016/j.pharmthera.2020.107666

57. Wan L., Pantel K., Kang Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med. 2013;19(11):1450–64. DOI: 10.1038/nm.3391

58. Weidle U.H., Birzele F., Kollmorgen G., Rüger R. Molecular mechanisms of bone metastasis. Cancer Genomics Proteomics. 2016;13(1):1– 12. PMID: 26708594

59. Loreth D., Schuette M., Zinke J., Mohme M., Piffko A., Schneegans S., et al. CD74 and CD44 expression on CTCs in cancer patients with brain metastasis. Int J Mol Sci. 2021;22(13):6993. DOI: 10.3390/ijms22136993

60. Miwa S., Mizokami A., Keller E.T., Taichman R., Zhang J., Namiki M. The bisphosphonate YM529 inhibits osteolytic and osteoblastic changes and CXCR-4-induced invasion in prostate cancer. Cancer Res. 2005;65(19):8818–25. DOI: 10.1158/0008-5472.CAN-05-0540

61. Wang J., Loberg R., Taichman R.S. The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev. 2006;25(4):573–87. DOI: 10.1007/s10555-006-9019-x

62. Cheng X., Wang Z. Immune modulation of metastatic niche formation in the bone. Front Immunol. 2021;12:765994. DOI: 10.3389/fimmu.2021.765994

63. Mohammad K.S., Guise T.A. Mechanisms of osteoblastic metastases: role of endothelin-1. Clin Orthop Relat Res. 2003;(415 Suppl):S67–74. DOI: 10.1097/01.blo.0000093047.96273.4e

64. Tocci P., Blandino G., Bagnato A. YAP and endothelin-1 signaling: an emerging alliance in cancer. J Exp Clin Cancer Res. 2021;40(1):27. DOI: 10.1186/s13046-021-01827-8

65. Clines G.A., Mohammad K.S., Bao Y., Stephens O.W., Suva L.J., Shaughnessy J.D. Jr, et al. Dickkopf homolog 1 mediates endothelin1-stimulated new bone formation. Mol Endocrinol. 2007;21(2):486–98. DOI: 10.1210/me.2006-0346

66. Leth J.M., Ploug M. Targeting the urokinase-type plasminogen activator receptor (uPAR) in human diseases with a view to non-invasive imaging and therapeutic intervention. Front Cell Dev Biol. 2021;9:732015. DOI: 10.3389/fcell.2021.732015

67. Sabur V., Untan I., Tatlisen A. Role of PSA kinetics in hormone-refractory prostate cancer. J Coll Physicians Surg Pak. 2021;30(6):673–8. DOI: 10.29271/jcpsp.2021.06.673

68. Chaoying L., Chao M., Xiangrui Y., Yingjian H., Gang Z., Yunhan R., et al. Risk factors of bone metastasis in patients with newly diagnosed prostate cancer. Eur Rev Med Pharmacol Sci. 2022;26(2):391–8. DOI: 10.26355/eurrev_202201_27863

69. Kaplan Z., Zielske S.P., Ibrahim K.G., Cackowski F.C. Wnt and β-Catenin signaling in the bone metastasis of prostate cancer. Life (Basel). 2021;11(10):1099. DOI: 10.3390/life11101099

70. Supsavhad W., Hassan B.B., Simmons J.K., Dirksen W.P., Elshafae S.M., Kohart N.A., et al. Effect of Dickkopf-1 (Dkk-1) and SP600125, a JNK inhibitor, on Wnt signaling in canine prostate cancer growth and bone metastases. Vet Sci. 2021;8(8):153. DOI: 10.3390/vetsci8080153

71. Cai X., Luo J., Yang X., Deng H., Zhang J., Li S., et al. In vivo selection for spine-derived highly metastatic lung cancer cells is associated with increased migration, inflammation and decreased adhesion. Oncotarget. 2015;6(26):22905–17. DOI: 10.18632/oncotarget.4416

72. Kfoury Y., Baryawno N., Severe N., Mei S., Gustafsson K., Hirz T., et al. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell. 2021;39(11):1464–78.e8. DOI: 10.1016/j.ccell.2021.09.005

73. Weitzmann M.N. Bone and the immune system. Toxicol Pathol. 2017;45(7):911–24. DOI: 10.1177/0192623317735316

74. Okamoto K., Takayanagi H. Osteoimmunology. Cold Spring Harb Perspect Med. 2019;9(1):a031245. DOI: 10.1101/cshperspect.a031245

75. Amarasekara D.S., Yun H., Kim S., Lee N., Kim H., Rho J. Regulation of Osteoclast Differentiation by Cytokine Networks. Immune Netw. 2018;18(1):e8. DOI: 10.4110/in.2018.18.e8

76. D’Oronzo S., Coleman R., Brown J., Silvestris F. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management. J Bone Oncol. 2018;15:004–4. DOI: 10.1016/j. jbo.2018.10.004

77. Gabrilovich D.I. Myeloid-derived suppressor cells. Cancer Immunol Res. 2017;5(1):3–8. DOI: 10.1158/2326-6066.CIR-16-0297

78. Botta C., Gullà A., Correale P., Tagliaferri P., Tassone P. Myeloidderived suppressor cells in multiple myeloma: pre-clinical research and translational opportunities. Front Oncol. 2014;4:348. DOI: 10.3389/fonc.2014.00348

79. Cook K.D., Finger E.C., Santos C.D., Rock D.A. A quantitative method for detection of circulating fms related tyrosine kinase 3 (FLT-3) in acute myeloid leukemia (AML) patients. J Immunol Methods. 2019;470:55–8. DOI: 10.1016/j.jim.2019.04.010

80. Schrijver I.T., Théroude C., Roger T. Myeloid-derived suppressor cells in sepsis. Front Immunol. 2019;10:327. DOI: 10.3389/fimmu.2019.00327

81. Dysthe M., Parihar R. Myeloid-derived suppressor cells in the tumor microenvironment. Adv Exp Med Biol. 2020;1224:117–40. DOI: 10.1007/978-3-030-35723-8_8

82. Groth C., Hu X., Weber R., Fleming V., Altevogt P., Utikal J., et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120(1):16–25. DOI: 10.1038/s41416-018-0333-1

83. Mortezaee K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci. 2021;277:119627. DOI: 10.1016/j.lfs.2021.119627

84. Pan Y., Yu Y., Wang X., Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020;11:583084. DOI: 10.3389/fimmu.2020.583084


Review

For citations:


Beylerli O.A., Gareev I.F., Pavlov V.N., Musaev E.R., Chmutin G.E., Wang C. Mechanisms of Spinal Metastases: New Perspectives. Creative surgery and oncology. 2024;14(2):163-173. (In Russ.) https://doi.org/10.24060/2076-3093-2024-14-2-163-173

Views: 1294


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)