Preview

Creative surgery and oncology

Advanced search

Chemoradiation Treatment of Brainstem Glioma. Features of Physical and Dosimetric Planning (A Clinical Case)

https://doi.org/10.24060/2076-3093-2025-15-3-299-307

Abstract

Introduction. Brainstem gliomas are associated with the median overall survival of 6–16 months. The available treatment approaches have not shown significant improvement in survival rate, which makes the search for improved strategies particularly relevant. Materials and methods. In Radiotherapy Unit No. 1 of the Voronezh Regional Scientific and Clinical Oncology Center, a patient with a clinical and radiological diagnosis of glioma grade 4 of the right thalamus, posterior limb of the internal capsule, and right cerebral peduncle was treated. Treatment strategy: conventional radiotherapy to 60 Gy with temozolomide 75 mg/m2 /day. Results. The prescribed dose for the affected area outside the brainstem was 60 Gy, including the brainstem — 56 Gy. The treatment was tolerated well. No toxicity or neurological deficit progression was observed. Discussion. According to most scientific publications, radiation therapy with 54 Gy is a confirmed thera‑ peutic option in the treatment of brainstem gliomas. Some studies showed the possibility of increasing the maximum tolerant dose to the brainstem to 64 or 69.59 Gy. Therefore, the selected prescribed dose in the considered clinical case appears underestimated. However, during the planning process, the task was set to achieve a uniform dose distribu‑ tion. In the future, in cases of primary brainstem formations, it seems advisable to use 58 Gy as the prescribed dose. Conclusion. In the clinical case under consideration, the delivery of the prescribed 56–60 Gy dose to the main volume of brainstem glioma is possible, taking into account the existing tolerance criteria with the achievement of satisfactory dose coverage and the absence of development of serious neurological complications.

About the Authors

Yana O. Nikulshina
Voronezh Regional Scientific and Clinical Oncology Center
Russian Federation

Yana O. Nikulshina — Radiotherapy Unit No. 1 / Day Hospital

Voronezh



Marina I. Klinovitskaya
Voronezh Regional Scientific and Clinical Oncology Center
Russian Federation

Marina I. Klinovitskaya — Physico-Radiology Unit

Voronezh



Liliya S. Bakutina
Voronezh Regional Scientific and Clinical Oncology Center
Russian Federation

Liliya S. Bakutina — Radiotherapy Unit No. 1 / Day Hospital

Voronezh



References

1. Price M., Ballard C., Benedetti J., Neff C., Cioffi G., Waite K.A., et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2017–2021. NeuroOncology. 2024;26(6):1–85. DOI: 10.1093/neuonc/noae145

2. Kaprin A.D., Starinsky V.V., Shakhzadova A.O. (eds.) State of cancer care for population in Russia in 2023. Moscow: P.A Gertsen Moscow Research Oncology Institute — branch of the National Medical Research Center for Radiology; 2024 (In Russ.).

3. Reyes-Botero G., Mokhtari K., Martin-Duverneuil N., Delattre J.Y., Laigle-Donadey F. Adult brainstem gliomas. Oncologist. 2012;17(3):388–97. DOI: 10.1634/theoncologist.2011-0335

4. Leibetseder A., Leitner J., Mair M.J., Meckel S., Hainfellner J.A., Aichholzner M., et al. Prognostic factors in adult brainstem glioma: a tertiary care center analysis and review of the literature. J Neurol. 2022;269:1574–90. DOI: 10.1007/s00415-021-10725-0

5. Guillamo J.S., Monjour A., Taillandier L., Devaux B., Varlet P., HaieMeder C., et al. Association des Neuro-Oncologues d’Expression Française (ANOCEF). Brainstem gliomas in adults: prognostic factors and classification. Brain. 2001;124(12):2528–39. DOI: 10.1093/brain/124.12.2528. PMID: 11701605

6. Oronsky B., Reid T.R., Oronsky A., Sandhu N., Knox S.J. A review of newly diagnosed glioblastoma. Front Oncol. 2021;10(10):842–7. DOI: 10.3389/fonc.2020.574012

7. Kryanev A.M., Rozanov I.D., Lebedev S.S., Grekov D.N., Titov K.S., Yakusheva T.A., et al. Diffuse midline glioma of the brainstem: genetic features, complications and treatment prospects. Head and Neck Tumors. 2024;14(1):49–55 (In Russ.). DOI: 10.17650/2222-1468-2024-14-1-49-55

8. Gusev E.I., Konovalov A.N., Skvortsova V.I. (eds.) Neurology: national guideline. Moscow: GEOTAR-Media; 2022 (In Russ.).

9. Izmailov T.R., Usachev D.Yu., Krylov V.V., Kobyagov G.L., Absalyamova O.V., Bekyashev A.A. et al. (comp.) Primary central nervous system tumors: clinical guidelines. Мoscow; 2022 (In Russ.).

10. Niyazi M., Brada M., Chalmers A.J., Combs S.E., Erridge S.C., Fiorentino A., et al. ESTRO-ACROP guideline «target delineation of glioblastomas». Radiother Oncol. 2016;118(1):35–42. DOI: 10.1016/j.radonc.2015.12.003

11. Oppitz U., Maessen D., Zunterer H., Richter S., Flentje M. 3Drecurrence-patterns of glioblastomas after CT-planned postoperative irradiation. Radiother Oncol. 1999;53(1):53–7. DOI: 10.1016/s0167-8140(99)00117-6

12. Gebhardt B.J., Dobelbower M.C., Ennis W.H., Bag A.K., Markert J.M., Fiveash J.B. Patterns of failure for glioblastoma multiforme following limited-margin radiation and concurrent temozolomide. Radiat Oncol. 2014;9:130. DOI: 10.1186/1748-717X-9-130

13. Navarria P., Pessina F., Franzese C., Tomatis S., Perrino M., Cozzi L., et al. Hypofractionated radiation therapy (HFRT) versus conventional fractionated radiation therapy (CRT) for newly diagnosed glioblastoma patients. A propensity score matched analysis. Radiother. Oncol. 2018;127(1):108–13. DOI: 10.1016/j.radonc.2017.12.006

14. Azoulay M., Chang S.D., Gibbs I.C., Hancock S.L., Pollom E.L., Harsh G.R., et al. A phase I/II trial of 5-fraction stereotactic radiosurgery with 5-mm margins with concurrent temozolomide in newly diagnosed glioblastoma: primary outcomes. Neuro-Oncol. 2020;22(8):1182–9. DOI: 10.1093/neuonc/noaa019

15. Guram K., Smith M., Ginader T., Bodeker K., Pelland D., Pennington E., et al. Using smaller-than-standard radiation treatment margins does not change survival outcomes in patients with high-grade gliomas. Pract Radiat Oncol. 2019;9(1):16–23. DOI: 10.1016/j.prro.2018.06.001

16. Minniti G., Tini P., Giraffa M., Capone L., Raza G., Russo I., et al. Feasibility of clinical target volume reduction for glioblastoma treated with standard chemoradiation based on patterns of failure analysis. Radiother Oncol. 2023;181:109435. DOI: 10.1016/j.radonc.2022.11.024

17. Kumar N., Kumar R., Sharma S.C., Mukherjee A., Khandelwal N., Tripathi M., et al. Impact of volume of irradiation on survival and quality of life in glioblastoma: a prospective, phase 2, randomized comparison of RTOG and MDACC protocols. Neurooncol Pract. 2020;7(1):86–93. DOI: 10.1093/nop/npz024

18. Karschnia P., Young J.S., Dono A., Häni L., Sciortino T., Bruno F., et al. Prognostic validation of a new classification system for extent of resection in glioblastoma: A report of the RANO resect group. NeuroOncol. 2023;25(5):940–54. DOI: 10.1093/neuonc/noac193

19. Hayes A.R., Jayamanne D., Hsiao E., Schembri G.P., Bailey D.L., Roach P.J., et al. Utilizing 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) to define suspected nonenhancing tumor for radiation therapy planning of glioblastoma. Pract Radiat Oncol. 2018;8(4):230–8. DOI: 10.1016/j.prro.2018.01.006

20. Fleischmann D.F., Unterrainer M., Schön R., Corradini S., Maihöfer C., Bartenstein P., et al. Margin reduction in radiotherapy for glioblastoma through 18F-fluoroethyltyrosine PET? — A recurrence pattern analysis. Radiother Oncol. 2020;145:49–55. DOI: 10.1016/j.radonc.2019.12.005

21. Tinkle C.L., Duncan E.C., Doubrovin M., Han Y., Li Y., Kim H., et al. Evaluation of 11C-methionine PET and anatomic MRI associations in diffuse intrinsic pontine glioma. J Nuclear Med. 2019;60(3):312–9. DOI: 10.2967/jnumed.118.212514

22. Brat D.J., Aldape K., Colman H., Holland E.C., Louis D.N., Jenkins R.B., et al. cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol. 2018;136(5):805– 10. DOI: 10.1007/s00401-018-1913-0

23. Tesileanu C.M.S., Dirven L., Wijnenga M.M.J., Koekkoek J.A.F., Vincent A.J.P.E., Dubbink H.J., et al. Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria. NeuroOncol. 2020;22(4):515–23. DOI: 10.1093/neuonc/noz200

24. Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., FigarellaBranger D., et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncol. 2021;23(8):1231–51. DOI: 10.1093/neuonc/noab106

25. Ferrat D., Murat B., Omer S., Selcuk D., Bora U., Hakan G., et al. Review of dose fractionation schemes for pontine glioma irradiation. J Surg Res. 2020;6(1):73–8. DOI: 10.17352/2455-2968.000101

26. Panshin G.A. On the issue of modern radiotherapy of brain stem gliomas in adult patients. Difficult Patient. 2021;19(2):54–6 (In Russ.). DOI: 10.24412/2074-1995-2021-2-54-56

27. Ulitin A.Yu., Zheludkova O.G., Ivanov P.I., Kobyakov G.L., Matsko M.V., Naskhletashvili D.R., et al. Primary central nervous system tumors. 2024;14(3s2-1):183–211 (In Russ.). DOI: 10.18027/2224-5057-2024-14-3s2-1.1-10

28. Panagiotis P., Goyal A., Lu V.M., Alvi M.A., Bydon M., Kizilbash S.H., et al. The role of radiation and chemotherapy in adult patients with high-grade brainstem gliomas: results from the National Cancer Database. J Neurooncol. 2020;146(2):303–10. DOI: 10.1007/s11060-019-03374-x

29. Theeler B.J., Ellezam B., Melguizo-Gavilanes I., de Groot J.F., Mahajan A., Aldape K.D., et al. Adult brainstem gliomas: Correlation of clinical and molecular features. J Neurol Sci. 2015;353(1–2):92–7. DOI: 10.1016/j.jns.2015.04.014

30. Bisello S., Cilla S., Benini A., Cardano R., Nguyen N.P., Deodato F., et al. Dose-volume Constraints fOr oRganS At risk In Radiotherapy (CORSAIR): An “All-in-One” multicenter-multidisciplinary practical summary. Curr Oncol. 2022;29(10):7021–50. DOI: 10.3390/curroncol29100552

31. Paun A., Fox J., Balloy V., Chignard M., Qureshi S.T., Haston C.K. Combined Tlr2 and Tlr4 deficiency increases radiationinduced pulmonary fibrosis in mice. Int J Radiat Oncol Biol Phys. 2010;77(4):1198–205. DOI: 10.1016/j.ijrobp.2009.12.065

32. Kharofa J., Cohen E.P., Tomic R., Xiang Q., Gore E. Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy. Int J Radiat Oncol Biol Phys. 2012;84(1):238–43. DOI: 10.1016/j.ijrobp.2011.11.013

33. Emami B., Lyman J., Brown A., Cola L., Goitein M., Munzenrider J. E., et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22. DOI: 10.1016/0360-3016(91)90171-y

34. Mayo C., Yorke E., Merchant T.E. Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S36–41. DOI: 10.1016/j.ijrobp.2009.08.078

35. Marks L.B., Yorke E.D., Jackson A. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3):36–41. DOI: 10.1016/j.ijrobp.2009.07.1754

36. Fan X., Huang Y., Xu P., Min Y., Li J., Feng M., et al. Dosimetric analysis of radiation-induced brainstem necrosis for nasopharyngeal carcinoma treated with IMRT. BMC Cancer. 2022;22:178. DOI: 10.1186/s12885-022-09213-z


Review

For citations:


Nikulshina Ya.O., Klinovitskaya M.I., Bakutina L.S. Chemoradiation Treatment of Brainstem Glioma. Features of Physical and Dosimetric Planning (A Clinical Case). Creative surgery and oncology. 2025;15(3):299-307. (In Russ.) https://doi.org/10.24060/2076-3093-2025-15-3-299-307

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-3093 (Print)
ISSN 2307-0501 (Online)